Analisis Peluang Pengembangan Model Pembelajaran Kimia Berbasis STEM Pada Siswa SMA Se-Kota Mataram

Agus Abhi Purwoko, Mutiah Mutiah, Syarifa Wahidah Al Idrus, Yunita Arian Sani Anwar

Abstract

Kimia merupakan mata pelajaran yang masih kurang diminati oleh siswa sekolah menengah. Selain bersifat abstrak, kimia dianggap sebagai materi yang kurang dekat dengan kehidupan siswa. Model pembelajaran kimia berbasis STEM dapat digunakan meningkatkan ketertarikan siswa untuk mempelajari kimia. Namun, hingga kini belum banyak yang menerapkan STEM dalam proses belajar kimia. Penelitian ini bertujuan untuk menganalisis peluang dikembangkannya model STEM pada siswa SMA se-kota Mataram. Metode yang digunakan adalah metode survey menggunakan angket yang diisi oleh siswa dan guru kimia SMA di kota Mataram. Angket yang digunakan terdiri atas 2 jenis yaitu angket sikap siswa terhadap kimia dan angket pendapat guru tentang pengembangan model STEM di kota Mataram. Angket sikap terhadap kimia dibagi menjadi 4 kategori yaitu sikap belajar kimia, sikap terhadap praktikum kimia, kepercayaan terhadap kimia, dan kecenderungan untuk belajar kimia dimana masing-masing kategori diwakili oleh 3 pertanyaan. Angket divalidasi oleh 3 orang ahli di bidang pendidikan dan diperoleh kesimpulan bahwa angket valid untuk digunakan pada penelitian ini. Jumlah responden yang terlibat dalam penelitian ini adalah sebanyak 773 siswa dan 10 guru. Hasil survey menunjukkan persepsi negatif siswa untuk tiga kategori sikap yaitu sikap terhadap materi kimia, sikap terhadap praktikum kimia dan kecenderungan sikap untuk belajar kimia. Persepsi positif ditunjukkan pada satu kategori yaitu kepercayaan terhadap belajar kimia. Sebagian besar guru berpendapat bahwa belum pernah menerapkan model pembelajaran kimia berbasis STEM. Hasil survey ini menyimpulkan bahwa pengembangan model kimia berbasis STEM diperlukan untuk meningkatkan sikap siswa dalam belajar kimia.

Keywords

STEM, sikap terhadap kimia, siswa sekolah menengah atas.

Full Text:

PDF

References

Broman, K., Ekborg, M., & Johnels, J. (2011). Chemistry in crisis? Perspectives on teaching and learning chemistry in Swedish upper secondary schools. Nordina, 7(1), 43-53. doi: 10.5617/nordina.245.

Davidowitz, B. & Chittleborough, G. (2009). Linking the macroscopic, and sub-microscopic levels: diagrams multiple representations in chemical education. Dordrecht: Springer.

Talanquer, V. (2011). Macro, submicro, and symbolic: the many faces of the chemistry “triplet”. International Journal of Science Education, 33(2), 179-195. doi: 10.1080/09500690903386435.

Owoyemi, T.E., & Olowofela, T.A. (2013). Effects of the learning company approach on students’ achievement in chemistry. Asian Social Science, 9(1), 142-154. doi: 10.5539/ass.v9n1p142.

Afshar, M., & Han, Z. (2014). Teaching and learning medical biochemistry: perspectives from a student and an educator. Medical Science Educator, 24(3), 339-341. doi: 10.1007/s40670-015-0120-Z.

Fulton, T.B., Ronner, P., & Lindsley, J.E. (2012). Medical biochemistry in the era of competencies: is it time for Krebs cycle to go? Medical Science Educator, 22(1), 29-32. doi: 10.1007/BF03341749.

Mbajiorgu, N., & Reid, N. (2006). Factors influencing curriculum development in chemistry. Hull: Royal Society of Chemistry.

Cohen, R., & Kelly, A.M. (2019). Community college chemistry course taking and STEM academic persistence. Journal of Chemical Education, 96(1), 3-11. doi: 10.1021/acs.jchemed.8b00586.

Meng, C.C., & Noraini, I. (2014). Secondary students’ perceptions of assessment in science, technology, engineering, and mathematics (STEM). Eurasia Journal of Mathematics, Science, & Technology Education, 10(3), 219-227.

Moore, T.J., Stohlman, M.S., Wang, H.H., Tank, K.M., & Roehrig, G.H. (2014). Implementation and integration of engineering in K-12 STEM education. In Purzer, S., Strobel, J., & Cardella, M. (Eds). Engineering in Pre-College Settings: Synthesizing Research, Policy, and Practice (pp. 35-60) West Lafayette: Purdue University Press.

Sanders, M. (2009). STEM, STEM education, STEM mania. The Technology Teacher, 68(4), 20-26.

Stohlmann, M., Moore, T.J., & Roehrig, G.H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34.

Nadelson, L., Seifert, A.L., Moll, A., & Coats, B. (2012). I-STEM summer institute: an integrated approach to teacher professional development in STEM. Journal of STEM Education, 13(2), 69-83.

Mustafa, N., Ismail, Z., Tasir, Z., Said, M.N.H.M. (2016). A meta analysis on effective strategies for integrated STEM education. Advanced Science Letters, 12, 4225-4229.

Djemari, M. (2008). Teknik Penyusunan Instrumen Tes dan Nontest. Yogyakarta: Mitra Cendikia Press.

Gregory, R.J. (2007). Psychological testing: history, principles, and applications. Boston: Pearson.

Aiken, L.R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and Psychological Measurement, 45, 131-142. doi: 10.1177/001316448004000419.

Retnawati, H. (2016). Analisis kuantitatif instrumen penelitian: panduan peneliti, mahasiswa, dan psikometrian. Yogyakarta: Parama Publishing.

Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In Albarracín, D., Johnson, B.T., & Zanna, M.P (Eds.), The handbook of attitudes (pp. 173-221). Mahwah, NJ: Lawrence Erlbaum and Associates.

Rubini, B., & Liliasari. (2013). Basic natural sciences contribution for scientific attitude development and values of life. International Journal of Science and Research, 2(5), 465–468. Retrieved from https://www.ijsr.net/ archive/v2i5/IJSRON20131065.pdf.

Bøe, M. V., Henriksen, E. K., Lyons, T. and Schreiner, C. (2011). Participation in science and technology: young people’s achievement-related choices in late-modern societies. Studies in Science Education, 47(1), 37-72.

Breiner, J.M., Harkness, S.S., Johnson, C.C., & Koehler, C.M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.

Hinde, E. T. (2005). Revisiting curriculum integration: A fresh look at an old idea. The Social Studies, 96(3), 105-111.

Furner, J. and Kumar, D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science & Technology, 3(3), 185–189.

Riskowski, J. L., Todd, C. D., Wee, B., Dark, M. and Harbor, J. (2009). Exploring the effectiveness of an interdisciplinary water resources engineering module in an eighth grade science course. International Journal of Engineering Education, 25(1), 181–195.

Wang, H. H., Moore, T. J., Roehrig, G. H. and Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2), 1-13.

Nadelson, L. S. and Seifert, A. L. (2017). Integrated STEM defined: Context, challenges, and the future. The Journal of Educational Research, 110(3), 221-223.

Eckman, E. W., Williams, M. A. and Silver-Thorn, M. B. (2016). An integrated model for STEM teacher preparation: The value of a teaching cooperative educational experience. Journal of STEM Teacher Education, 51(1), 71-82.

El-Deghaidy, H. and Mansour, N. (2015). Science teachers’ perceptions of STEM education: Possibilities and challenges. International Journal of Learning and Teaching, 1(1), 51-54.

Asghar, A., Ellington, R., Rice, E., Johnson, F. and Prime, G. M. (2012). Supporting STEM education in secondary science contexts. Interdisciplinary Journal of Problem-based Learning, 6(2), 85-125.

Refbacks

  • There are currently no refbacks.