Waste cellulose extraction and analysis decortication sisal plant (Agave sisalana) Sumbawa Labangka

Authors

Fauzi Widyawati , Malik Fajar Fatoni , Emsal Yanuar , Syamsul Hidayat

DOI:

10.29303/jpm.v18i6.6065

Published:

2023-11-30

Issue:

Vol. 18 No. 6 (2023): November 2023

Articles

Downloads

How to Cite

Widyawati, F., Malik Fajar Fatoni, Emsal Yanuar, & Hidayat, S. (2023). Waste cellulose extraction and analysis decortication sisal plant (Agave sisalana) Sumbawa Labangka. Jurnal Pijar Mipa, 18(6), 1026–1033. https://doi.org/10.29303/jpm.v18i6.6065

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Waste utilization of decortication Sisal plants is minimal compared to the amount of waste produced, especially the cellulose content in the waste decortication sisal plant. This research aims to extract waste cellulose decortication sisal plants using acid and alkaline solutions with variations in NaOH solutions of 0%, 2%, 4%, 6%, and 8%. The process used is alkalization, bleaching, and acid hydrolysis by method analysis. Next, testing using SEM and FTIR methods is done to determine the morphology of waste cellulose decortication in the resulting sisal plants and the cellulose, lignin, and hemicellulose content in the waste decortication sisal plant. Before treatment, the cellulose content of the waste is given to decorticate the sisal plant at 31%, and after alkalization treatment, the cellulose content is 54%. Cellulose content in waste decortication Sisal plants in each process increases with found O-H bonds at waves 3000-3600 cm-1, C-H bonds belong to hemicellulose at wave numbers 2800-3000 cm-1 and remove lignin, which is in the waste decortication Sisal plants did not find C=C bonds belonging to lignin at waves of 1200-1300 cm-1. FTIR test results show an increase in cellulose intensity, with the resulting cellulose measuring 28.64762 µm and 33.69369 µm. The increase in cellulose intensity in FTIR is directly proportional to the SEM results, which show a loose layer with lignin and hemicellulose that has been eroded from the cellulose.

References

Hanafie, Rita. (2010). Pengantar Ekonomi Pertanian. Yogyakarta

Sutarman, Agus. (2012). Prospek Tanaman Agave Sisalana.Pusat Penyuluhan Pertanian, Direktorat Tanaman Tahunan.

uryanto, H., Marsyahyo, E., Irawan, Y.S., Soenoko, R., (2014). Morphology, Structure, and Mechanical Properties of Natural Cellulose Fiber from Mendong Grass (Fimbristylis globulosa). J. Nat, Fibers 11.

Febrianti, A. (2018). Analisis Finansial Tanaman Sisal Di Kabupaten Sumbawa Barat (Doctoral dissertation, Universitas Mataram).

Muthangya, M., Hashim, S. O., Amana, J. M., Mshandete, A. M., Kivaisi, A. K., & Mutemi, M. (2013). Auditing and characterisation of sisal processing waste: A bioresource for value addition. J. Agric. Biol. Sci, 8(7), 518-524..

Prasetiyo, K. W. (2020). Aplikasi Nanoteknologi Dalam Industri Hasil Hutan (Application Of Nanotechnology In Forest Products Industry). Akar, 2(1), 15-26..

Hoang, V. T., Pham, T. N., & Yum, Y. J. (2020). Mechanical properties of coconut trunk particle/polyester composite based on alkali treatment. Advanced Composites Letters, 29, 2633366X20935891.

Aditama, A. G., & Ardhyananta, H. (2017). Isolasi selulosa dari serat tandan kosong kelapa sawit untuk nano filler komposit absorpsi suara: Analisis FTIR. Jurnal Teknik ITS, 6(2), F229-F232.

Tajalla, G. U. N., Humaira, S., Parmita, A. W. Y. P., & Zulfikar, A. (2019). Pembuatan dan Karakterisasi Selulosa dari Limbah Serbuk Meranti Kuning (Shorea macrobalanos). J. Sains Terap, 5(1), 142-147.

Kusmiran, A., & Desiasni, R. (2020). Analisis Pengaruh Konsentrasi Natrium Hidroksida terhadap Sifat Mekanik Biokomposit Berpenguat Serat Sisal. Jurnal Fisika, 10(2), 11-18..

Putera, R. D. H. (2012). Ekstraksi serat selulosa dari tanaman eceng gondok (Eichornia crassipes) dengan variasi pelarut. Skripsi, Universitas Indonesia, Depok.

Utomo, S. (2014). Pengaruh waktu aktivasi dan ukuran partikel terhadap daya serap karbon aktif dari kulit singkong dengan aktivator NaOH. Prosiding Semnastek, 1(1). 2407 - 1846.

Utami, H. F., Hastuti, R. B., & Hastuti, E. D. (2015). Kualitas daun binahong (anredera cordifolia) pada suhu pengeringan berbeda. Jurnal Akademika Biologi, 4(2), 51-59.

Datta, A., Bettermann, A., & Kirk, T. K. (1991). Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Applied and Environmental Microbiology, 57(5), 1453-1460.

Wibisono, S. d. (2002). Buku Kerja Praktek di PT Kertas Lecces Persero. Probolinggo.

Zhou H, Lou K Yang D, Zhu JY, Qiu X (2013). Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: Role of molecular weight and substrate lignin. Ind Eng Chem Res 52(25), 8464-8470

Nufus Kanani, E. Y. (2018). Pengaruh Konsentrasi Pelarut Terhadap Proses Delignifikasi Dengan Metode Pre-Treatment Kimia. Jurnal Teknika, 14(1), 87 – 96

Lestari, M. D. (2018). ‘Ekstraksi Selulosa dari Limbah Pengolahan Agar Menggunakan Larutan NaOH sebagai Prekursor Bioetanol’, Indonesian Journal of Chemical Science, 7(3).

Damat, (1989). Isolasi Lignin dari Larutan Sisa Pemasak Pabrik Pulp dengan menggunakan H¬¬¬¬¬¬¬¬¬¬¬¬¬¬-2SO4 dan HCl. Fakultas Teknologi Pertanian, IPB.

Achmadi, S.S. (1990). Kimia Kayu. Depdikbud, Direktorat Pendidikan Tinggi. Pusat Antar Universitas Bioteknologi, IPB.

Jufrinaldi. (2018). Isolasi Selulosa Dari Bagas Tebu Melalui Pemanasan Iradiasi . Jurnal Ilmiah Teknik Kimia UNPAM, Vol. 2 No. 2.

Zulfikar, A., Putri, N. P. S. N. K., & Tajalla, G. U. N. (2020). Studi Pengaruh Waktu Alkalisasi pada Ekstraksi Selulosa Berbasis Serat Eceng Gondok (Eichhornia crassipes). SPECTA Journal of Technology, 4(2), 1–12.

Pradana, M. A., Ardhyananta, H., & Farid, M. (2017). Pemisahan Selulosa dari Lignin Serat Tandan Kosong Kelapa Sawit dengan Proses Alkalisasi untuk Penguat Bahan Komposit Penyerap Suara. Jurnal Teknik ITS, 6(2), 413–416.

Łojewska, J., Miśkowiec, P., Łojewski, T., & Proniewicz, L. M. (2005). Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polymer degradation and stability, 88(3), 512-520.

Rezania, S., Alizadeh, H., Cho, J., Darajeh, N., Park, J., Hashemi, B., ... & Kumar, S. (2019). Changes in composition and structure of water hyacinth based on various pretreatment methods. BioResources, 14(3), 6088-6099.

Author Biographies

Fauzi Widyawati, universitas teknologi sumbawa

Malik Fajar Fatoni, sumbawa university of technology

Emsal Yanuar, sumbawa university of technology

Syamsul Hidayat, sumbawa university of technology

License

Copyright (c) 2023 Fauzi Widyawati, Malik Fajar Fatoni, Emsal Yanuar, Syamsul Hidayat

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).