Identification and Evaluation of Lactic Acid Bacteria from Collagen Milk as Potential Probiotic Candidates
Authors
Elsa Mega Suryani , Deni Harmoko , Namrotur RosiahDOI:
10.29303/jbt.v25i4a.10576Published:
2025-12-03Issue:
Vol. 25 No. 4a (2025): Special IssueKeywords:
collagen hydrolysate, fermentation, functional food, microbiotaArticles
Downloads
How to Cite
Downloads
Abstract
Collagen milk is a novel substrate that has rarely been investigated as a source of probiotic bacteria, despite its great potential as a functional food. This study aimed to isolate and characterize lactic acid bacteria (LAB) from collagen milk and to evaluate their tolerance to acidic conditions. The isolation and identification of LAB were conducted based on Gram staining, catalase testing, and cell morphology. Acid tolerance was assessed at pH 1, 2, and 3 to simulate gastric conditions. The results showed that a total of 21 LAB isolates were successfully obtained, most of which were rod-shaped and Gram-positive. Among these isolates, three superior strains SKF-174, SKF-106, and SKF-204 exhibited high tolerance to acidic environments, indicating their ability to survive under gastrointestinal conditions. These findings suggest that fermented collagen milk has the potential to serve as a promising source of probiotic lactic acid bacteria with strong acid resistance and desirable functional properties.
References
Ağagündüz, D., Yılmaz, B., Şahin, T. Ö., Güneşliol, B. E., Ayten, Ş., Russo, P., Spano, G., Rocha, J. M., Bartkiene, E., & Özogul, F. (2021). Dairy lactic acid bacteria and their potential function in dietetics: The food–gut-health axis. Foods, 10 (12), 1–33.
https://doi.org/10.3390/foods10123099
Al Hajj, W., Salla, M., Krayem, M., Khaled, S., Hassan, H. F., & El Khatib, S. (2024). Hydrolyzed collagen: Exploring its applications in the food and beverage industries and assessing its impact on human health – A comprehensive review. Heliyon, 10(16). https://doi.org/10.1016/J.HELIYON.2024.E36433
Amenu, D., & Bacha, K. (2023). Probiotic potential and safety analysis of lactic acid bacteria isolated from Ethiopian traditional fermented foods and beverages. Annals of Microbiology, 73(1), 1–14. https://doi.org/10.1186/S13213-023-01740-9/TABLES/6
Anagnostopoulos, D., Bozoudi, D., & Tsaltas, D. (2018). Enterococci isolated from cypriot green table olives as a new source of technological and probiotic properties. Fermentation, 4(2), 48. https://doi.org/10.3390/fermentation4020048
Anggraeni, C. D. W., Sri Winarti, & Luqman Agung Wicaksono. (2025). Development Probiotic Drink of Siwalan Sap Ready to Drink Using Lactobacillus acidophilus FNCC0051, Lactobacillus plantarum FNCC0027, and Bifidobacterium breve BRL131. AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment), 9(2), 221–226. https://doi.org/10.29165/AJARCDE.V9I2.685
Anumudu, C. K., Miri, T., & Onyeaka, H. (2024). Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods, 13(23), 3714. https://doi.org/10.3390/FOODS13233714
Asha, M. N., Chowdhury, M. S. R., Hossain, H., Rahman, M. A., Emon, A. Al, Tanni, F. Y., Islam, M. R., Hossain, M. M., & Rahman, M. M. (2024). Antibacterial potential of lactic acid bacteria isolated from raw cow milk in Sylhet district, Bangladesh: A molecular approach. Veterinary Medicine and Science, 10(3), e1463. https://doi.org/10.1002/VMS3.1463
Chakraborty, A., Dutta, P., Amrit, R., Dey, P., & Osborne, W. J. (2025). Antagonistic activity of butanamine 2,2-dinitro-N-methyl- synthesized by endosymbiotic Bacillus amyloliquefaciens VITAPRJS1 acquired from horse milk. International Microbiology, 1–19. https://doi.org/10.1007/S10123-025-00640-Z/METRICS
Cizeikiene, D., & Jagelaviciute, J. (2021). Investigation of Antibacterial Activity and Probiotic Properties of Strains Belonging to Lactobacillus and Bifidobacterium Genera for Their Potential Application in Functional Food and Feed Products. Probiotics and Antimicrobial Proteins, 13(5), 1387–1403. https://doi.org/10.1007/S12602-021-09777-5/METRICS
Coulibaly, W. H., Kouadio, N. R., Camara, F., Diguță, C., & Matei, F. (2023). Functional properties of lactic acid bacteria isolated from Tilapia (Oreochromis niloticus) in Ivory Coast. BMC Microbiology, 23(1), 1–15. https://doi.org/10.1186/S12866-023-02899-6/FIGURES/6
Dikbaş, N., Orman, Y. C., Uçar, S., & Alım, Ş. (2025). Investigation of Probiotic Properties of Lacticaseibacillus casei 4 N‐6 Strain Isolated From Cow Milk. Food Science & Nutrition, 13(4), e70205. https://doi.org/10.1002/FSN3.70205
Han, K., Park, S., Sathiyaseelan, A., & Wang, M. H. (2023). Isolation and Characterization of Enterococcus faecium from Fermented Korean Soybean Paste with Antibacterial Effects. Fermentation, 9(8), 760. https://doi.org/10.3390/FERMENTATION9080760/S1
Khalil, N., Dabour, N., M, E.-Z., & Kheadr, ehab. (2021). Food Bio-Preservation: An Overview with Particular Attention to Lactobacillus plantarum. Alexandria Journal of Food Science and Technology, 18(1), 33–50. https://doi.org/10.21608/ajfs.2021.187135
Kossaliyeva, G., Rysbekuly, K., Zhaparkulova, K., Kozykan, S., Li, J., Serikbayeva, A., Shynykul, Z., Zhaparkulova, M., & Yessimsiitova, Z. (2025). Chemical composition, physical properties, and immunomodulating study of mare’s milk of the Adaev horse breed from Kazakhstan. Frontiers in Nutrition, 12, 1443031. https://doi.org/10.3389/FNUT.2025.1443031/BIBTEX
Kouadri Boudjelthia, N., Belabbas, M., Bekenniche, N., Monnoye, M., Gérard, P., & Riazi, A. (2023). Probiotic Properties of Lactic Acid Bacteria Newly Isolated from Algerian Raw Cow’s Milk. Microorganisms, 11(8). https://doi.org/10.3390/microorganisms11082091
León-López, A., Pérez-Marroquín, X. A., Campos-Lozada, G., Campos-Montiel, R. G., & Aguirre-Álvarez, G. (2020). Characterization of Whey-Based Fermented Beverages Supplemented with Hydrolyzed Collagen: Antioxidant Activity and Bioavailability. Foods 2020, Vol. 9, Page 1106, 9(8), 1106. https://doi.org/10.3390/FOODS9081106
Liang, Q., Zhou, W., Peng, S., Liang, Z., Liu, Z., Zhu, C., & Mou, H. (2025). Current status and potential of bacteriocin-producing lactic acid bacteria applied in the food industry. Current Research in Food Science, 10, 100997. https://doi.org/10.1016/J.CRFS.2025.100997
Lima, E. M. F., Soutelino, M. E. M., Silva, A. C. de O., Pinto, U. M., Todorov, S. D., & Rocha, R. da S. (2025). Current Updates on Limosilactobacillus reuteri: Brief History, Health Benefits, Antimicrobial Properties, and Challenging Applications in Dairy Products. Dairy 2025, Vol. 6, Page 11, 6(2), 11. https://doi.org/10.3390/DAIRY6020011
Lys, I. M. (2025). The Role of Lactic Fermentation in Ensuring the Safety and Extending the Shelf Life of African Indigenous Vegetables and Its Economic Potential. Applied Research, 4(1), e202400131. https://doi.org/10.1002/APPL.202400131
Madana, S. T., & Sathiavelu, M. (2024). Probiotic evaluation, adherence capability and safety assessment of Lactococcus lactis strain isolated from an important herb “Murraya koenigii.” Scientific Reports 2024 14:1, 14(1), 1–14. https://doi.org/10.1038/s41598-024-66597-7
Mahala, N., Mittal, A., Lal, M., & Dubey, U. S. (2022). Isolation and characterization of bioactive lactoferrin from camel milk by novel pH-dependent method for large scale production. Biotechnology Reports, 36, e00765. https://doi.org/10.1016/J.BTRE.2022.E00765
Mekala, P. N., Mohammad, R., & Ansari, H. (2023). Biotechnological potential of lactic acid bacteria derived bacteriocins in sustainable food preservation.
Mulaw, G., Sisay Tessema, T., Muleta, D., & Tesfaye, A. (2019). In Vitro Evaluation of Probiotic Properties of Lactic Acid Bacteria Isolated from Some Traditionally Fermented Ethiopian Food Products. International Journal of Microbiology, 2019, 7179514. https://doi.org/10.1155/2019/7179514
Nawaz, A. S. N., Jagadeesh, K. S., & Krishnaraj, P. U. (2017). Isolation and Screening of Lactic Acid Bacteria for Acidic pH and Bile Tolerance. International Journal of Current Microbiology and Applied Sciences, 6(7), 3975–3980. https://doi.org/10.20546/ijcmas.2017.607.411
Obafemi, Y. D., Obiukwu, A. C., & Oranusi, S. U. (2025). Revisiting the application, current trends, and prospect of bacteriocins in food preservation. Discover Food, 5(1), 1–17. https://doi.org/10.1007/S44187-025-00472-W/METRICS
Oktari, A., Supriatin, Y., Kamal, M., & Syafrullah, H. (2017). The Bacterial Endospore Stain on Schaeffer Fulton using Variation of Methylene Blue Solution. Journal of Physics: Conference Series, 812(1). https://doi.org/10.1088/1742-6596/812/1/012066
Olaimat, A. N., Taybeh, A. O., Al-Nabulsi, A., Al-Holy, M., Hatmal, M. M., Alzyoud, J., Aolymat, I., Abughoush, M. H., Shahbaz, H., Alzyoud, A., Osaili, T., Ayyash, M., Coombs, K. M., & Holley, R. (2024). Common and Potential Emerging Foodborne Viruses: A Comprehensive Review. Life 2024, Vol. 14, Page 190, 14(2), 190. https://doi.org/10.3390/LIFE14020190
Ospanov, A., Velyamov, S., Tlevlessova, D., Schetinina, E., Kairbayeva, A., Makeeva, R., & Tastanova, R. (2023). Survival of lactic acid bacteria when using the developed yogurt from the milk of small cattle under in-vitro conditions. Food Science and Technology (Brazil), 43. https://doi.org/10.1590/fst.117722
Psomas, E., Sakaridis, I., Boukouvala, E., Karatzia, M. A., Ekateriniadou, L. V., & Samouris, G. (2023). Indigenous Lactic Acid Bacteria Isolated from Raw Graviera Cheese and Evaluation of Their Most Important Technological Properties. Foods 2023, Vol. 12, Page 370, 12(2), 370. https://doi.org/10.3390/FOODS12020370
Rachwał, K., & Gustaw, K. (2024). Lactic Acid Bacteria in Sustainable Food Production. Sustainability 2024, Vol. 16, Page 3362, 16(8), 3362. https://doi.org/10.3390/SU16083362
Ravindra B. Malabadi, Sadiya MR, Kiran P. Kolkar, & Raju K. Chalannavar. (2024). Pathogenic Escherichia coli (E. coli) food borne outbreak: Detection methods and controlling measures. Magna Scientia Advanced Research and Reviews, 10(1), 052–085. https://doi.org/10.30574/MSARR.2024.10.1.0003
Saguibo, Maldia, M. A., Perez, S. T., Calapardo, M. T. M., & Elegado. (2019). Identification and characterization of lactic acid bacteria isolated from some medicinal and/or edible Philippine plants. 6(3), 698–712. https://doi.org/10.26656/fr.2017.3(6).148
Samuel, M., Sanwlani, R., Pathan, M., Anand, S., Johnston, E. L., Ang, C. S., Kaparakis-Liaskos, M., & Mathivanan, S. (2023). Isolation and Characterization of Cow-, Buffalo-, Sheep- and Goat-Milk-Derived Extracellular Vesicles. Cells, 12(20), 2491. https://doi.org/10.3390/CELLS12202491/S1
Sekiya, M., Ikeda, K., Yonai, A., Ishikawa, T., Shimoyama, Y., Kodama, Y., Sasaki, M., & Nakanishi-Matsui, M. (2023). F-type proton-pumping ATPase mediates acid tolerance in Streptococcus mutans. Journal of Applied Microbiology, 134(4). https://doi.org/10.1093/JAMBIO/LXAD073
Sharma, A., & Lee, H. J. (2025). Antimicrobial Activity of Probiotic Bacteria Isolated from Plants: A Review. Foods (Basel, Switzerland), 14(3). https://doi.org/10.3390/FOODS14030495
Sionek, B., Szydłowska, A., Trząskowska, M., & Kołożyn-Krajewska, D. (2024). The Impact of Physicochemical Conditions on Lactic Acid Bacteria Survival in Food Products. Fermentation, 10(6), 1–17. https://doi.org/10.3390/fermentation10060298
Subedi, D., Paudel, M., Poudel, S., & Koirala, N. (2025). Food Safety in Developing Countries: Common Foodborne and Waterborne Illnesses, Regulations, Organizational Structure, and Challenges of Food Safety in the Context of Nepal. Food Frontiers, 6(1), 86–123. https://doi.org/10.1002/FFT2.517
Taye, Y., Degu, T., Fesseha, H., & Mathewos, M. (2021). Isolation and Identification of Lactic Acid Bacteria from Cow Milk and Milk Products. The Scientific World Journal, 2021(1), 4697445. https://doi.org/10.1155/2021/4697445
https://doi.org/10.1111/TBED.13787
Yumnam, H., Nath, S., Chakraborty, P., & Sharma, I. (2025). Assessment of potential probiotic lactic acid bacteria in rice-based fermented products of Southern Assam, Northeast India. Frontiers in Microbiology, 16, 1536593. https://doi.org/10.3389/FMICB.2025.1536593/BIBTEX
Zaky, A. A., Simal-Gandara, J., Eun, J. B., Shim, J. H., & Abd El-Aty, A. M. (2022). Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Frontiers in Nutrition, 8, 815640. https://doi.org/10.3389/FNUT.2021.815640
Znamirowska, A., Szajnar, K., & Pawlos, M. (2020). Probiotic Fermented Milk with Collagen. Dairy 2020, Vol. 1, Pages 126-134, 1(2), 126–134. https://doi.org/10.3390/DAIRY1020008
License
Copyright (c) 2025 Elsa Mega Suryani, Deni Harmoko, Namrotur Rosiah

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























