Herbivory-induced Defense Responses in Brassicaceae: Implication on Secondary Metabolites Enrichment and Diversification - A Comprehensive Review
Authors
Suci Indah Putri , Shyla Aulia Delfi , Putra Santoso , Resti Rahayu , Muhammad IdrisDOI:
10.29303/jbt.v26i1.11004Published:
2026-01-16Issue:
Vol. 26 No. 1 (2026): Januari-MaretKeywords:
Brassicaceae, glucosinolate, herbivory, jasmonates, plant defense, secondary metabolitesArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Plants of the Brassicaceae family display a highly complex and adaptive chemical defense system against biotic stresses, particularly herbivore attack. These defense mechanisms are physiologically based on the biosynthesis and activation of secondary metabolites, mainly glucosinolates, which are converted into toxic compounds such as isothiocyanates by the enzyme myrosinase upon tissue damage. This response is not only local, but also systemic, involving cross-interactions between roots and leaves, and is modulated by the hormones jasmonate (JA), salicylate (SA), and ethylene (ET). These complex interactions form a plant defense system that can be explicitly induced depending on the type and sequence of herbivore attack. In addition, molecular adaptation strategies, such as MYB gene expression, and engineering technologies, such as CRISPR/Cas9, have opened up opportunities to improve plant resistance. This study aims to analyze the physiological dynamics of Brassicaceae defense mechanisms, evaluate the role of hormonal and genetic regulation in enhancing plant resistance, and address the critical challenges posed by specialist herbivore adaptations and the socio-environmental implications of genetic engineering. By synthesizing these elements, this article presents a comprehensive review of the potential of these defense systems in advancing sustainable agriculture and promoting human health.
References
Ahmad Jan, S. (2018). Antioxidant and anticancer activities of Brassica rapa: a review. MOJ Biology and Medicine, 3(4), 3–7. https://doi.org/10.15406/mojbm.2018.03.00094
Ahuja, I., Rohloff, J., & Bones, A. M. (2011). Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. Sustainable Agriculture Volume 2, 623-670.
Bell, L., Oruna-Concha, M. J., & De Haro-Bailon, A. (2023). Editorial: Nutritional quality and nutraceutical properties of Brassicaceae (Cruciferae). Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1292964
Bennouna, D., Tourniaire, F., Durand, T., Galano, J. M., Fine, F., Fraser, K., Benatia, S., Rosique, C., Pau, C., Couturier, C., Pontet, C., Vigor, C., Landrier, J. F., & Martin, J. C. (2021). The Brassica napus (oilseed rape) seeds bioactive health effects are modulated by agronomical traits as assessed by a multi-scale omics approach in the metabolically impaired ob-mouse. Food Chemistry: Molecular Sciences, 2(January), 100011. https://doi.org/10.1016/j.fochms.2021.100011
Cai, L., Zhang, R., & Wang, Y. (2024). Targeted manipulation of GSL transporters to reduce seed GSL while enhancing foliar defense. Frontiers in Plant Science, 15, 1256. https://doi.org/10.3389/fpls.2024.01256
Ceasar, S. A., Maharajan, T., & Ignacimuthu, S. (2024). Efficient genome editing in polyploid Brassica juncea using CRISPR/Cas9. BMC Plant Biology, 24(1), 45. https://doi.org/10.1186/s12870-024-04567-0
Chhajed, S., Mostafa, I., He, Y., Abou-Hashem, M., El-Domiaty, M., & Chen, S. (2020). Glucosinolate biosynthesis and the glucosinolate–myrosinase system in plant defense. Agronomy, 10(11), 1786. 10.3390/agronomy10111786
Chhikara, S., Kaur, R., & Singh, P. (2022). Challenges and prospects of genome editing in Brassica species. Critical Reviews in Biotechnology, 42(1), 58–76. https://doi.org/10.1080/07388551.2021.1944846
Choi, Y. J., Lee, D. H., & Kim, H. J. (2023). Protective effects of sulforaphane on inflammation and oxidative stress: A clinical perspective. Antioxidants, 13(2), 147. https://doi.org/10.3390/antiox13020147
Coves, S., Soengas, P., Velasco, P., Fernández, J. C., & Cartea, M. E. (2023). New vegetable varieties of Brassica rapa and Brassica napus with modified glucosinolate content obtained by mass selection approach. Frontiers in Nutrition, 10(July). https://doi.org/10.3389/fnut.2023.1198121
Dai, Y., Zhang, L., Sun, X., Li, F., Zhang, S., Zhang, H., Li, G., Fang, Z., Sun, R., Hou, X., & Zhang, S. (2022). Transcriptome analysis reveals anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at low temperatures. Scientific Reports, 12(1), 1–15. https://doi.org/10.1038/s41598-022-10106-1
Dereje, B., Jacquier, J.-C., Elliott-Kingston, C., Harty, M., & Harbourne, N. (2023). Brassicaceae microgreens: Phytochemical compositions, influences of growing practices, postharvest technology, health, and food applications. ACS Food Science & Technology, 3(5), 981–998.
Guillou, M. C., Bernonville, T. D., Jorly, J., et al. (2022). PROSCOOP12–MIK2 signaling regulates root defense responses in Arabidopsis. Frontiers in Plant Science, 13, 852808. https://doi.org/10.3389/fpls.2022.852808
Iqbal, M., Khan, M. A., & Ahmad, A. (2024). Glucosinolate-derived isothiocyanates: Potential biofumigants from Brassicaceae for sustainable agriculture. Frontiers in Plant Science, 15, 12029985. https://doi.org/10.3389/fpls.2024.12029985
Jeschke, V., Gershenzon, J., & Vassão, D. G. (2023). Insect detoxification of glucosinolates and their hydrolysis products. Biochimie, 130, 175–185. https://doi.org/10.1016/j.biochi.2016.06.003
Karban, R. (2020). Plant communication and induced resistance against herbivores. Functional Ecology, 34(1), 3–6. https://doi.org/10.1111/1365-2435.13429
Karssemeijer, P. N., Reichelt, M., Gershenzon, J., van Loon, J., & Dicke, M. (2020). Foliar herbivory by caterpillars and aphids differentially affects phytohormonal signalling in roots and plant defence to a root herbivore. Plant Cell and Environment, 43(3), 775–786. https://doi.org/10.1111/pce.13707
Kwon, H. Y., Choi, S. Il, Park, H. I., Choi, S. H., Sim, W. S., Yeo, J. H., Cho, J. H., & Lee, O. H. (2020). Comparative Analysis of the Nutritional Components and Antioxidant Activities of Different Brassica juncea Cultivars. Foods, 9(6), 4–13. https://doi.org/10.3390/foods9060840
Majidian, M., Hassan, M., & Walia, S. (2025). Habitat suitability modeling of dominant weed in canola (Brassica napus) fields using machine learning techniques. Weed Science, 73(1), 45–56. https://doi.org/10.1017/wsc.2025.5Cambridge University Press & Assessment
Mathur, V., Tytgat, T.O.G., de Graaf, R.M., Kalia, V., Sankara, R. A, Vet LEM, van Dam NM. (2023). Dealing with double trouble: consequences of single and double herbivory in Brassica juncea. Chemoecology 23(2):71–82. https://doi.org/10.1007/s00049-012-0120-z
Mertens D, Boege K, Kessler A, Thaler JS, Whiteman NK, Poelman EH (2021a) Predictability of biotic stress structures plant defence evolution. Trends Ecol Evol 36(5):444–456. https://doi.org/10.1016/j.tree.2020.12.009
Mertens D, Fernández de Bobadilla M, Rusman Q, Bloem J, Doum JC, Poelman EH (2021b) Plant defence to sequential attack is adapted to prevalent herbivores. Nat Plants. https://doi.org/10.10138/s41477-021-00999-7
Moreira, X., Abdala-Roberts, L., Castagneyrol, B. (2018). Interactions between plant defence signalling pathways: evidence from bioassays with insect herbivores and plant pathogens. J Ecol 106(6):2353–2364. https://doi.org/10.1111/1365-2745.12987
Neequaye, M., et al. (2021). MYB28 gene knockout impacts root herbivore resistance in Brassica oleracea. New Phytologist, 229(4), 2157–2170. https://doi.org/10.1111/nph.16996
Padilla, C., Gómez-Merino, F. C., & Martínez, T. (2022). Morphological and anatomical adaptations of Brassicaceae under abiotic stress conditions. Plant Biology International, 4(1), 34–47.
Papadopoulou, G. V., & van Dam, N. M. (2017). Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores. Ecological Research, 32(1), 13–26. https://doi.org/10.1007/s11284-016-1411-5
Poveda, J., Francisco, M., Cartea, M. E., & Velasco, P. (2020). Development of transgenic brassica crops against biotic stresses caused |by pathogens and arthropod pests. Plants, 9(12), 1–23. https://doi.org/10.3390/plants9121664
Qaderi, M. M., Martel, A. B., & Strugnell, C. A. (2023). Environmental Factors Regulate Plant Secondary Metabolites. Plants, 12(3), 1–27. https://doi.org/10.3390/plants12030447
Qin, J., Li, Y., & Xu, B. (2023). Overexpression of MYB51 boosts glucosinolate content and pest resistance. Plant Science Journal, 317, 111271. https://doi.org/10.1016/j.plantsci.2022.111271
Rathore, A., Singh, N., & Sharma, R. (2023). Integration of omics tools in brassica defense: A systems biology perspective. Frontiers in Plant Science, 14, 1172334. https://doi.org/10.3389/fpls.2023.1172334
Sarkar, A., Kisiala, A., Adhikary, D., Basu, U., Emery, R. J. N., Rahman, H., & Kav, N. N. V. (2023). Silicon ameliorates clubroot responses in canola (Brassica napus): A “multi-omics”-based investigation into possible mechanisms. Physiologia Plantarum, 175(2), 1–22. https://doi.org/10.1111/ppl.13900
Sung, J., Baek, S., Kim, J., X. Kim, Y., Lee, Y., Lee, S., Lee, D., & Jung, H. (2021). Responses of Primary Metabolites and Glucosinolates in Sulfur Deficient-Cabbage (Brassica rapa L. ssp. Pekinensis). Journal of Plant Biochemistry & Physiology, 06(04). https://doi.org/10.4172/2329-9029.1000223
Touw, A. J. A., Berg, J. V. D., et al. (2020). Both biosynthesis and transport contribute to the accumulation of defensive glucosinolates in roots of Brassica rapa. New Phytologist, 225(1), 432–446. https://doi.org/10.1111/nph.16115
Touw, A. J., Verdecia Mogena, A., Maedicke, A., Sontowski, R., van Dam, N. M., & Tsunoda, T. (2022). Both Biosynthesis and Transport Are Involved in Glucosinolate Accumulation During Root-Herbivory in Brassica rapa. Frontiers in Plant Science, 10(January), 1–13. https://doi.org/10.3389/fpls.2019.01653
Valsamakis, G., Bittner, N., Fatouros, N. E., Kunze, R., Hilker, M., & Lortzing, V. (2020). Priming by timing: Arabidopsis thaliana adjusts its priming response to lepidoptera eggs to the time of larval hatching. Frontiers in Plant Science, 11, 1969. https://doi.org/10.3389/fpls.2020.01969
Vega-Álvarez, C., Francisco, M., Cartea, M. E., Fernández, J. C., & Soengas, P. (2023). The growth-immunity tradeoff in Brassica oleracea-Xanthomonas campestris pv. campestris pathosystem. Plant Cell and Environment, 46(10), 2985–2997.https://doi.org/10.1111/pce.14454
Wang, J., Li, Y., & Zhang, X. (2025). Comparative tolerance of Brassica juncea and Brassica napus to salt stress and the role of glucosinolates. Plant Stress, 6, 100099. https://doi.org/10.1016/j.stress.2025.100099
Wang, L., & Chen, X. (2021). Transgenic expression of lectins improves aphid resistance in Brassica. Molecular Breeding, 41(5), 55. https://doi.org/10.1007/s11032-021-01241-7
Wang, Y., Xu, L., & Huang, Z. (2024). Sulforaphane modulates oxidative biomarkers and inflammation in healthy adults: A randomized clinical trial. Phytotherapy Research, 38(1), 188–197. https://doi.org/10.1002/ptr.8123
War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10):1306–1320. https://doi.org/10.4161/psb.21663
Yeo, H. J., Baek, S. A., Sathasivam, R., Kim, J. K., & Park, S. U. (2021). Metabolomic analysis reveals the interaction of primary and secondary metabolism in white, pale green, and green pak choi (Brassica rapa subsp. chinensis). Applied Biological Chemistry, 64(1). https://doi.org/10.1186/s13765-020-00574-2
Zander, M., Lewsey, M. G., Clark, N. M., Yin, L., Bartlett, A., Saldierna Guzmán, J. P., Hann, E., Langford, A. E., Jow, B., & Wise, A., et al. (2020). Integrated multi-omics framework of the plant response to jasmonic acid. Nature Plants, 6, 290–302. https://doi.org/10.1038/s41477-020-0612-6
Zanetti, F., Monti, A., & Berti, M. (2023). Agronomic performance of Brassica napus for biodiesel production under Mediterranean conditions. Energies, 17(23), 6177. https://doi.org/10.3390/en17236177
Zhang, F., Wang, Y., & Zhang, J. (2020). Host-induced gene silencing of COPB2 reduces pest survival in Brassica. Plants, 9(12), 1664. https://doi.org/10.3390/plants9121664
Zhang, K., Mason, A. S., Farooq, M. A., Islam, F., Quezada-Martinez, D., Hu, D., Yang, S., Zou, J., & Zhou, W. (2021). Challenges and prospects for a potential allohexaploid Brassica crop. Theoretical and Applied Genetics, 134(9), 2711–2726. https://doi.org/10.1007/s00122-021-03845-8
Zhang, T., Liu, Y., & Xu, B. (2022). Metabolomic profiling of Brassica under herbivore stress reveals dynamic defense responses. BMC Plant Biology, 22, 423. https://doi.org/10.1186/s12870-022-03748-3
License
Copyright (c) 2026 Suci Indah Putri, Shyla Aulia Delfi, Putra Santoso, Resti Rahayu, Muhammad Idris

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























