Spatial–Vertical Distribution of Microplastics Abundance and Characteristics in the Coastal Waters of Raha City, Muna Regency
Authors
Annisa Syaesar Rahman , La Ode Alirman Afu , Emiyarti Emiyarti , Warsidah WarsidahDOI:
10.29303/jbt.v26i1.11347Published:
2026-01-23Issue:
Vol. 26 No. 1 (2026): Januari-MaretKeywords:
Coastal waters, Microplastics, Raha City, Spatial–vertical distribution, Water columnArticles
Downloads
How to Cite
Downloads
Abstract
Microplastics are emerging pollutants increasingly detected in coastal waters and may disrupt marine ecosystem functioning as well as pose potential risks to human health. This study aimed to analyze the spatial–vertical distribution of microplastic abundance and characteristics in the coastal waters of Raha City. Sampling was conducted at three stations representing an anthropogenic activity gradient: the harbor/fish landing port (Station I), the tourism–residential area (Station II), and the river mouth (Station III). At each station, samples were collected at three depths (surface, mid-water, and near-bottom) using a plankton net, then filtered and microscopically identified based on microplastic type and color. The results showed a consistent spatial gradient, with the highest mean abundance at Station I (5.58 particles/m³), followed by Station III (4.45 particles/m³), and the lowest at Station II (1.87 particles/m³). Vertically, microplastic abundance tended to be higher in the surface and mid-water layers than near the bottom, indicating the dominance of low-density particles remaining suspended in the water column. Microplastic characteristics were dominated by fibers across all stations, while black-colored particles were most frequently observed, accounting for >30% at each station. These findings confirm the strong contribution of fisheries–harbor activities and land-based waste inputs (particularly via the river mouth) as the main sources of microplastics in the study area. This study provides important baseline data on the three-dimensional distribution of microplastics in the coastal waters of Raha City and underscores the need to strengthen land-based waste management and regulate marine-related activities in the area.
References
Akoueson, F., Sheldon, L. M., Danopoulos, E., Morris, S., Hotten, J., Chapman, E., Li, J., & Rotchell, J. M. (2020). A Preliminary Analysis of Microplastics in Edible Versus Non-Edible Tissues From Seafood Samples. Environmental Pollution, 263, 114452. https://doi.org/10.1016/j.envpol.2020.114452
APHA (American Public Health Association). (2012). Standard Methods for the Examination of Water and Wastewater. 22nd ed. Washington DC (US): AWWA (American Water Works Association) and WEF (Water Environment Federation)
Claessens, M., Meester, S. De, Landuyt, L. Van, Clerck, K. De, & Janssen, C. R. (2011). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin, 62(10), 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030
Conan, P., Philip, L., Ortega‐Retuerta, E., Odobel, C., Duran, C., Pandin, C., Giraud, C., Meistertzheim, A., Barbe, V., Hall, A. Ter, Pujo‐Pay, M., & Ghiglione, J. (2022). Evidence of Coupled Autotrophy and Heterotrophy on Plastic Biofilms and Its Influence on Surrounding Seawater. Environmental Pollution, 315, 120463. https://doi.org/10.1016/j.envpol.2022.120463
Cormier, B., Cachot, J., Blanc, M., Cabar, M., Clérandeau, C., Dubocq, F., Bihanic, F. Le, Morin, B., Zapata, S., Bégout, M., & Cousin, X. (2022). Environmental Microplastics Disrupt Swimming Activity in Acute Exposure in Danio Rerio Larvae and Reduce Growth and Reproduction Success in Chronic Exposure in D. Rerio and Oryzias Melastigma. Environmental Pollution, 308, 119721. https://doi.org/10.1016/j.envpol.2022.119721
Fabri‐Ruiz, S., Baudena, A., Moullec, F., Lombard, F., Irisson, J., & Pedrotti, M. L. (2023). Mistaking Plastic for Zooplankton: Risk Assessment of Plastic Ingestion in the Mediterranean Sea. The Science of the Total Environment, 856, 159011. https://doi.org/10.1016/j.scitotenv.2022.159011
Frère, L., Maignien, L., Chalopin, M., Huvet, A., Rinnert, E., Morrison, H. G., Kerninon, S., Cassone, A.-L., Lambert, C., Réveillaud, J., & Paul-Pont, I. (2018). Microplastic Bacterial Communities in the Bay of Brest: Influence of Polymer Type and Size. Environmental Pollution, 242, 614–625. https://doi.org/10.1016/j.envpol.2018.07.023
Frias, J. P. G. L., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145–147. https://doi.org/10.1016/j.marpolbul.2018.11.022
Han, H., Wang, Z., Wang, J., Wang, T., Li, Y., Guan, D., & Sun, H. (2021). Impact of High Dietary Cornstarch Level on Growth, Antioxidant Response, and Immune Status in GIFT Tilapia Oreochromis Niloticus. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86172-8
Hermabessière, L., Paul-Pont, I., Cassone, A.-L., Himber, C., Receveur, J., Jézéquel, R., Rakwe, M. El, Rinnert, E., Rivière, G., Lambert, C., Huvet, A., Dehaut, A., Duflos, G., & Soudant, P. (2019). Microplastic Contamination and Pollutant Levels in Mussels and Cockles Collected Along the Channel Coasts. Environmental Pollution, 250, 807–819. https://doi.org/10.1016/j.envpol.2019.04.051
Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060–3075. https://doi.org/10.1021/es2031505
Justino, A. K. S., Ferreira, G. V. B., Schmidt, N., Eduardo, L. N., Fauvelle, V., Lenoble, V., Sempéré, R., Panagiotopoulos, C., Mincarone, M. M., Frédou, T., & Lucena‐Frédou, F. (2022). The Role of Mesopelagic Fishes as Microplastics Vectors Across the Deep-Sea Layers From the Southwestern Tropical Atlantic. Environmental Pollution, 300, 118988. https://doi.org/10.1016/j.envpol.2022.118988
Kataoka, T., Nihei, Y., Kudou, K., & Hinata, H. (2019). Assessment of the sources and inflow processes of microplastics in the river environments of Japan. Environmental Pollution, 244, 958–965. https://doi.org/10.1016/j.envpol.2018.10.111
Kazour, M., Jemaa, S., Issa, C., Khalaf, G., & Amara, R. (2019). Microplastics Pollution Along the Lebanese Coast (Eastern Mediterranean Basin): Occurrence in Surface Water, Sediments and Biota Samples. The Science of the Total Environment, 696, 133933. https://doi.org/10.1016/j.scitotenv.2019.133933
Kooi, M., & Koelmans, A. A. (2019). Simplifying Microplastic via Continuous Probability Distributions for Size, Shape, and Density. Environmental Science & Technology Letters, 6(9), 551–557. https://doi.org/10.1021/acs.estlett.9b00379
Lusher, A. L., Welden, N. A., Sobral, P., & Cole, M. (2017). Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Analytical Methods, 9(9), 1346–1360. https://doi.org/10.1039/C6AY02415G
McIlwraith, H. K., Kim, J., Helm, P., Bhavsar, S. P., Metzger, J. S., & Rochman, C. M. (2021). Evidence of Microplastic Translocation in Wild-Caught Fish and Implications for Microplastic Accumulation Dynamics in Food Webs. Environmental Science & Technology, 55(18), 12372–12382. https://doi.org/10.1021/acs.est.1c02922
Manalu, A. A. (2017). Kelimpahan mikroplastik di Teluk Jakarta (Tesis). Institut Pertanian Bogor, Bogor, Indonesia
Mohsen, M., Zhang, L., Sun, L., Lin, C., Wang, Q., & Yang, H. (2020). Microplastic Fibers Transfer From the Water to the Internal Fluid of the Sea Cucumber Apostichopus Japonicus. Environmental Pollution, 257, 113606. https://doi.org/10.1016/j.envpol.2019.113606
Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I., & Thompson, R. C. (2014). Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future, 2(6), 315–320. https://doi.org/10.1002/2014EF000240.
Payel, S., Pahlevani, F., Ghose, A., & Sahajwalla, V. (2025). From Bulk to Bits: Understanding The Degradation Dynamics from Plastics to Microplastics, Geographical Influences and Analytical Approaches. Environmental Toxicology and Chemistry, 44(4), 895–915. https://doi.org/10.1093/etojnl/vgaf037.
Seoane, M., González-Fernández, C., Soudant, P., Huvet, A., Esperanza, M., Cid, Á., & Paul-Pont, I. (2019). Polystyrene Microbeads Modulate the Energy Metabolism of the Marine Diatom Chaetoceros Neogracile. Environmental Pollution, 251, 363–371. https://doi.org/10.1016/j.envpol.2019.04.142
Sun, T., Zhan, J., Li, F., Ji, C., & Wu, H. (2021). Effect of Microplastics on Aquatic Biota: A Hormetic Perspective. Environmental Pollution, 285, 117206. https://doi.org/10.1016/j.envpol.2021.117206
Tallec, K., Huvet, A., Poi, C. Di, González-Fernández, C., Lambert, C., Petton, B., Goïc, N. Le, Berchel, M., Soudant, P., & Paul-Pont, I. (2018). Nanoplastics Impaired Oyster Free Living Stages, Gametes and Embryos. Environmental Pollution, 242, 1226–1235. https://doi.org/10.1016/j.envpol.2018.08.020
Tang, G., Liu, M., Zhou, Q., He, H., Chen, K., Zhang, H., Hu, J., Huang, Q., Luo, Y., Ke, H., Chen, B., Xu, X., & Cai, M. (2018). Microplastics and Polycyclic Aromatic Hydrocarbons (PAHs) in Xiamen Coastal Areas: Implications for Anthropogenic Impacts. The Science of the Total Environment, 634, 811–820. https://doi.org/10.1016/j.scitotenv.2018.03.336
Teng, J., Wang, Q., Ran, W., Wu, D., Liu, Y., Sun, S., Liu, H., Cao, R., & Zhao, J. (2019). Microplastic in Cultured Oysters From Different Coastal Areas of China. The Science of the Total Environment, 653, 1282–1292. https://doi.org/10.1016/j.scitotenv.2018.11.057
Teng, J., Zhao, J., Zhang, C., Cheng, B., Koelmans, A. A., Wu, D., Gao, M., Sun, X., Liu, Y., & Wang, Q. (2020). A Systems Analysis of Microplastic Pollution in Laizhou Bay, China. The Science of the Total Environment, 745, 140815. https://doi.org/10.1016/j.scitotenv.2020.140815
Teng, J., Zhao, J., Zhu, X., Shan, E., Zhang, C., Zhang, W., & Wang, Q. (2021). Toxic Effects of Exposure to Microplastics With Environmentally Relevant Shapes and Concentrations: Accumulation, Energy Metabolism and Tissue Damage in Oyster Crassostrea Gigas. Environmental Pollution, 269, 116169. https://doi.org/10.1016/j.envpol.2020.116169
Tu, C., Chen, T., Zhou, Q., Liu, Y., Wei, J., Waniek, J. J., & Luo, Y. (2020). Biofilm Formation and Its Influences on the Properties of Microplastics as Affected by Exposure Time and Depth in the Seawater. The Science of the Total Environment, 734, 139237. https://doi.org/10.1016/j.scitotenv.2020.139237
Uguen, M., Gaudron, S. M., Nicastro, K. R., Zardi, G. I., Spilmont, N., & Seuront, L. (2023). Size-Dependent Response of the Mussel Collective Behaviour to Plastic Leachates and Predator Cues. The Science of the Total Environment, 888, 164037. https://doi.org/10.1016/j.scitotenv.2023.164037
Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031
Xu, Y., Chan, F. K. S., Stanton, T. H., Johnson, M. F., Kay, P., He, J., Wang, J., Kong, C., Wang, Z., Liu, D., & Xu, Y. (2021). Synthesis of Dominant Plastic Microfibre Prevalence and Pollution Control Feasibility in Chinese Freshwater Environments. The Science of the Total Environment, 783, 146863. https://doi.org/10.1016/j.scitotenv.2021.146863
Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environmental Science & Technology, 47(13), 7137–7146. https://doi.org/10.1021/es401288x
Zhang, B., Yang, X., Liu, L., Chen, L., Teng, J., Zhu, X., Zhao, J., & Wang, Q. (2021). Spatial and Seasonal Variations in Biofilm Formation on Microplastics in Coastal Waters. The Science of the Total Environment, 770, 145303. https://doi.org/10.1016/j.scitotenv.2021.145303
Zhang, Y., Soerensen, A. L., Schartup, A. T., & Sunderland, E. M. (2020). A Global Model for Methylmercury Formation and Uptake at the Base of Marine Food Webs. Global Biogeochemical Cycles, 34(2). https://doi.org/10.1029/2019gb006348
License
Copyright (c) 2026 Annisa Syaesar Rahman, La Ode Alirman Afu, Emiyarti Emiyarti, Warsidah Warsidah

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























