Solvent Characterization of Lycopene Extraction in Tomato Fruits as Sensitizer Candidates in Dye-Sensitized Solar Cell (DSSC)
Authors
Devi Ayu Septiani , Agus Abhi Purwoko , Aliefman HakimDOI:
10.29303/jbt.v22i3.3787Published:
2022-07-19Issue:
Vol. 22 No. 3 (2022): July - SeptemberKeywords:
Lycopene; Tomato Fruit; Sensitizer; Dye-Sensitized Solar Cells.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
This study is an experimental study aimed at clarifying the characteristics of the solvent in the extraction of lycopene in tomato (Solanum lycopersicum) as a candidate photosensitizer for dye-sensitized solar cells (DSSC). The performance of DSSC depends on the type of dye commonly used as a sensitizer. Tomatoes contain an lycopene. Yields of lycopene extract in tomatoes were characterized by FTIR and UV-Vis spectrophotometers. The extraction methods used in this study are the maceration method and liquid-liquid extraction. The procedure of this study was carried out in two main stages, the extraction stage and the characterization stage. The first step was the extraction of lycopene from tomatoes using the maceration and liquid-liquid extraction methods. The maceration process compared the use of acetone and ethyl acetate as solvents. This extraction step produced 6.514 g (acetone) and 5.6702 g (ethyl acetate) lycopene extracts. The second step is to identify the functional groups of the compound formed using an FTIR spectrophotometer and use a UV-Vis spectrophotometer to determine the absorbance and maximum wavelength value of the lycopene and M-lycopene complex. The results of the FTIR spectrophotometer test showed that using acetone as the solvent produced wavenumbers similar to lycopene compared to ethyl acetate. UV-Vis spectrophotometer test results show the maximum wavelengths of the lycopene extract using acetone as the solvent were 447 nm, and 294 nm when ethyl acetate was used as the solvent. The Eg results revealed that the Eg values for the acetone and ethyl acetate extracts were 4.52 eV and 2.68 eV. Based on the results of property analysis of the two solvents used, acetone was more suitable than ethyl acetate for the extraction of tomato lycopene used as a DSSC sensitizer.
References
Aghel, N., Ramezani, Z., & Amirfakhrian, S. (2011). Isolation and quantification of lycopene from tomato cultivated in Dezfoul, Iran. Jundishapur Journal of Natural Pharmaceutical Products, 6(1), 9-15.
Alfa, N., & Mustofa, S. (2019). Likopen, Antioksidan Eksogen yang Bermanfaat bagi Fertilitas Laki-laki. Jurnal Majority, 8(1), 237-241.
Amogne, N. Y., Ayele, D. W., & Tsigie, Y. A. (2020). Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell. Materials for Renewable and Sustainable Energy, 9(4), 1-16. https://doi.org/10.1007/s40243-020-00183-5
Andianita, T. D., & Setiarso, P. (2021). Optimasi Potensi Ekstrak Rimpang Temulawak (Curcuma Xanthorriza Roxb) Ph Asam Sebagai Sensitizer Pada DSSC. Indonesian Chemistry and Application Journal, 4(2), 8-15.
Bagher, A. M., Vahid, M. M. A., & Mohsen, M. (2015). Types of solar cells and application. American Journal of optics and Photonics, 3(5), 94-113. https://doi.org/10.11648/j.ajop.20150305.17
Baryshnikov, G. V., Minaev, B. F., Myshenko, E. V., & Minaeva, V. A. (2013). Structure and electronic absorption spectra of isotruxene dyes for dye-sensitized solar cells: investigation by the DFT, TDDFT, and QTAIM methods. Optics and Spectroscopy, 115(4), 484-490. https://doi.org/10.1134/S0030400X13100020
Dewi, E. S., Hakim, A., & Savalas, L. R. T. (2019). Isolasi Likopen dari Buah Tomat (Solanum lycopersicum L) Dan Uji Aktivitas Likopen Terhadap Bakteri Salmonella Thypi. Jurnal Penelitian Pendidikan IPA, 5(1). https://doi.org/10.29303/jppipa.v5i1.172
Gaur, A., & Tiwari, G. N. (2013). Performance of photovoltaic modules of different solar cells. Journal of Solar Energy, 2013, 1-13. https://doi.org/10.1155/2013/734581
George, B., Kaur, C., Khurdiya, D. S., & Kapoor, H. C. (2004). Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food chemistry, 84(1), 45-51. https://doi.org/10.1016/S0308-8146(03)00165-1
Gong, J., Liang, J., & Sumathy, K., (2012). Review on dye-sensitized solar cells (DSSCs ): Fundamental concepts and novel materials, Renewable and Sustainable Energy Reviews, 16(8), 5848–5860. https://doi.org/10.1016/j.rser.2012.04.044
Gratzel, M.. (2003). Dye-Sensitized Solar Cells. Journal Photochemistry and Photobiology. 4: 145-153. https://doi.org/10.1016/S1389-5567(03)00026-1
Harahap, P. (2019). Implementasi Karakteristik Arus Dan Tegangan Plts Terhadap Peralatan Trainer Energi Baru Terbarukan. Seminar Nasional Teknik (SEMNASTEK) UISU, 2(1), 152–157.
Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L., & Ahmed, N. (2019). Solar energy—A look into power generation, challenges, and a solar‐powered future. International Journal of Energy Research, 43(3), 1049-1067. https://doi.org/10.1002/er.4252
Imelda, I. (2020). Rekayasa Struktur Akseptor Pada Zat Warna Organik Tipe D-Π-a Dengan Kerangka Tiofen. Journal of Research and Education Chemistry, 2(1), 30-30. https://doi.org/10.25299/jrec.2020.vol2(1).4857
Longo, C., & De Paoli, M. A. (2003). Dye-sensitized solar cells: a successful combination of materials. Journal of the Brazilian Chemical Society, 14, 898-901. https://doi.org/10.1590/S0103-50532003000600005
Maleta, H. S., Indrawati, R., Limantara, L., & Brotosudarmo, T. H. P. (2018). Ragam metode ekstraksi karotenoid dari sumber tumbuhan dalam dekade terakhir (telaah literatur). Jurnal Rekayasa Kimia & Lingkungan, 13(1), 40-50. https://doi.org/10.23955/rkl.v13i1.10008
Maulida, D., & Zulkarnaen, N. (2010). Likopen, ekstraksi, solven campuran n-heksana, etanol, dan aseton (Doctoral dissertation, Jurusan Teknik Kimia Fakultas Teknik).
Moradiya, M. A., Dangodara, A., Pala, J., Savaliya, C. R., Dhruv, D., Rathod, V. R., ... & Markna, J. H. (2019). A natural tomato slurry as a photosensitizer for dye-sensitized solar cells with TiO2/CuO composite thin films. Separation Science and Technology, 54(2), 207-212. https://doi.org/10.1080/01496395.2018.1444053
Mourvaki, E., Gizzi, S., Rossi, R., & Rufini, S. (2005). Passionflower Fruit—A" New" Source of Lycopene?. Journal of Medicinal food, 8(1), 104-106. https://doi.org/10.1089/jmf.2005.8.104
Nur, A. (2013). Pengaruh Temperatur Kalsinasi pada Kaca FTO yang dicoating ZnO terhadap Efisiensi DSSC (Dye Sensitized Solar Cell) yang menggunakan Dye dari Buah Terung Belanda (Solanum betaceum). Jurnal Teknik POMITS. 1: 1-6.
Nurhidayah, N., Suwarni, S., Rahayu alfitri Usna, S., Afrianto, M. F., Farid, F., Purbakawaca, R., & Deswardani, F. (2019). Pengaruh ketebalan elektroda kerja TiO2/grafit terhadap efisiensi dye sensitized solar cells (DSSC). Jurnal Komunikasi Fisika Indonesia. https://doi.org/10.31258/jkfi.16.1.46-51
Ortiz, G. F., Hanzu, I., Knauth, P., Lavela, P., Tirado, J. L., & Djenizian, T. (2009). TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochimica Acta, 54(17), 4262-4268. https://doi.org/10.1016/j.electacta.2009.02.085
Preedy, V. R., & Watson, R. R. (2008). Lycopene. Nutritional, Medicinal and Therapeutic Properties. En eld, NH: Science Publishers.
Purwoko, A. A., Setiawati, V. R., & Hadisaputra, S. (2019). Metal-pigment complex derived from natural dye of anthocyanin: a potential candidate for DSSC photosensitizer. In IOP Conference Series: Materials Science and Engineering, 509(1), p.012130. https://doi.org/10.1088/1757-899X/509/1/012130
Ramadhani, L. F., Nurjannah, I. M., Yulistiani, R., & Saputro, E. A. (2020). teknologi aktivasi fisika pada pembuatan karbon aktif dari limbah tempurung kelapa. Jurnal Teknik Kimia, 26(2), 42-53. https://doi.org/10.36706/jtk.v26i2.518
Rao, A. V., Ray, M. R., & Rao, L. G. (2006). Lycopene. Advances in food and nutrition research, 51, 99-164. https://doi.org/10.1016/S1043-4526(06)51002-2
Richhariya, G., Kumar, A., Tekasakul, P., & Gupta, B. (2017). Natural dyes for dye sensitized solar cell: A review. Renewable and Sustainable Energy Reviews, 69, 705- 718. https://doi.org/10.1016/j.rser.2016.11.198
Rimbawati, Ardiansyah, N., & Noorly Evalina. (2019). Perancangan Sistem Pengontrolan Tegangan. Semnastek Uisu, 1, 14–20.
Singh, S., Singh, P. K., Kakroo, S., Hachim, D. M., Dhapola, P. S., & Khan, Z. H. (2021). Eco-friendly dye sensitized solar cell using natural dye with solid polymer electrolyte as hole transport material. Materials Today: Proceedings, 34, 760-766. https://doi.org/10.1016/j.matpr.2020.04.775
Supriyanto, A., Nurosyid, F., & Ahliha, A. H. (2018). Carotenoid pigment as sensitizers for applications of dye-sensitized solar cell (DSSC). In IOP Conference Series: Materials Science and Engineering, 432 (1), p.012060. https://doi.org/10.1088/1757-899X/432/1/012060
Syafinar, R., Gomesh, N., Irwanto, M., Fareq, M., & Irwan, Y. M. (2015). Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC). Energy Procedia, 79, 896-902. https://doi.org/10.1016/j.egypro.2015.11.584
Takaichi, A., Nakamoto, T., Joko, N., Nomura, N., Tsutsumi, Y., Migita, S., ... & Hanawa, T. (2013). Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications. Journal of the mechanical behavior of biomedical materials, 21, 67-76. https://doi.org/10.1016/j.jmbbm.2013.01.021
Tarigan, S. F. G., Sinaga, D. C., & Masyithah, Z. (2016). Ekstraksi Likopen dari Buah Tomat (Lycopersicum Esculentum) Menggunakan Pelarut Tunggal dengan Metode Kristalisasi Antisolvent. Jurnal Teknik Kimia USU, 5(2), 9-14. https://doi.org/10.32734/jtk.v5i2.1528
Tristiyanti, D., Hamdani, S., & Rohita, D. (2013). Penetapan kadar likopen dari beberapa buah berdaging merah dengan metode spektrofotometri. Indonesian Journal of Pharmaceutical Science and Technology, 2(2), 11-21.
Wahab, N. H. (2016). Karakterisasi Zat Warna Tomat (Solanum Lycopersicum) Fraksi Metanol: N-Heksan Sebagai Photosensitizer pada Dye Sensitized Solar Cell (DSSC). (Doctoral dissertation, Universitas Islam Negeri Alauddin Makassar). https://doi.org/10.24252/al-kimia.v4i2.1678
Wrolstad, R. E., & Culver, C. A. (2012). Alternatives to those artificial FD&C food colorants. Annual review of food science and technology, 3, 59-77. https://doi.org/10.1146/annurev-food-022811-101118
Wu, Y., & Zhu, W. (2013). Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chemical Society Reviews, 42(5), 2039-2058. https://doi.org/10.1039/C2CS35346F
Yum, J., Humphry-baker, R., Zakeeruddin, S. M., Nazeeruddin, M. K., & Grätzel, M. (2010). Effect of heat and light on the performance of dye-sensitized solar cells based on organic sensitizers and nanostructured TiO 2. Nano Today. 5, 91-98. https://doi.org/10.1016/j.nantod.2010.02.003
Zhou, H., Wu, L., Gao, Y., & Ma, T. (2011). Dye-sensitized solar cells using 20 natural dyes as sensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 219(2-3), 188-194. https://doi.org/10.1016/j.jphotochem.2011.02.008
License
Copyright (c) 2022 Devi Ayu Septiani, Agus Abhi Purwoko, Aliefman Hakim
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.