Water Content of Stingless Bee Honey Varies by Season
Authors
Andi Gita Maulidyah Indraswari Suhri , Irnayanti BaharDOI:
10.29303/jbt.v23i2.4651Published:
2023-03-06Issue:
Vol. 23 No. 2 (2023): April-JuneKeywords:
beekeepers, feed resources, moisture content, nutrition, raw honey.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
The relative humidity of the air in the region where honey is produced has a significant influence on the moisture content of the honey. The production season, feed source, nectar type and concentration, colony strength, and physical environmental conditions are all factors that influence honey's moisture content. The goal of this study was to determine the moisture content of honey collected over the course of a year to learn more about the quality and safety of honey. One hundred fifty samples of honey gathered from Bone, Indonesia, during both the wet and dry seasons were analyzed to assess the percentage of moisture present in the honey. Honey's physical properties, microbiological value, sensory qualities, and economic worth are all affected by its moisture content. At a temperature of 25 degrees Celsius, an Abbetype standard model refractometer was used to measure the refractive index (RI) in accordance with the method recommended by the International Honey Commission. Comparing honeys produced during the wet season with those produced during the dry season revealed that there is a statistically significant variation in the quantity of moisture that is present (p = 0.0029). This demonstrated that the moisture content of honey during the dry season had a substantially different value compared to the wet season at the 0.01 level (p = 0.00024). Using the F test, it was determined that there was not a significant difference in the amount of moisture contained in specific varieties of honey that were produced during the wet seasons and those that were produced during the dry seasons.
References
Abramovic, H., Jamnik, M., Burkan, L., & Kac M. (2008). Water activity and water content in Slovenian honey. Food Control, 19(11), 1086-1090. DOI: https://doi.org/10.1016/j.foodcont.2007.11.008
Akhtar, S., Ali, J., Javed, B., Hassan, S., Abbas, S., & Siddique, M. (2014). Comparative physiochemical analysis of imported and locally produced Khyber Pakhtunkhwa honey. Global Journal of Biotechnology and Biochemistry, 9(3), 55–59. DOI: 10.5829/idosi.gjbb.2014.9.3.8533
Bijlsma, L., de Bruijn, L. L. M., Martens, E. P., Sommeijer, M. J. (2006). Water content of stingless bee honeys (Apidae: meliponini) interspecific variation and comparison with honey of Apis mellifera. Apidologie, 37: 480-486. DOI: https://doi.org/10.1051/apido:2006034
Bruijn de, L. L. M., Sommeijer, M. J. (1997). The composition and properties of honeys of stingless bees (Melipona), in: Sommeijer M.J., Beetsma J., Boot W.-J., Robberts E.-J., Vries de R. (Eds.), Perspectives for honey production in the tropics, NECTAR: IBRA, 149–168. DOI: https://doi.org/10.3390/app12136370
Buba, F., Gidado, A., & Shugaba, A. (2013). Analysis of Biochemical Com-position of Honey Samples from North-East Nigeria. Biochemistry and Analytical Biochemistry, 2(3), 2-7. DOI: 10.4172/2161-1009.1000139
Chrife, J., Zamora, M. C, & Motto, A. (2006). The correlation between water activity and % moisture in honey: fundamental aspects and application to Argentina honeys. Journal of Food Enginering, 2(3), 287-292. DOI: https://doi.org/10.1016/j.jfoodeng.2004.12.009
Cortopassi-Laurino, M., & Gelli, D. S. (1991). Analyse pollinique, propriétés physico-chimiques et action antibactérienne des miels d’abeilles africanisées Apis mellifera et de Méliponinés du Brésil. Apidologie, 22, 61–73. DOI: https://doi.org/10.1051/apido:19910108
Diacu, E., & Tantaveanu, E. F. (2007). Determination of moisture content and its correlation with other parameters in honey quality control. Revista De Chimie-Bucharest-Original Edition-, 58(12), 1310.
Escuredo, O., Dobre, I., Fernández-González, M., & Seijo, M. C. (2014). Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food chemistry, 149, 84-90. DOI: 10.1016/j.foodchem.2013.10.097
Guo, W., Zhu, X., Liu, Y., & Zhuang, H. (2010). Sugar and water contentsof honey with dielectric property sensing. Journal of food Engineering, 97(2), 275-281. DOI: https://doi.org/10.1016/j.jfoodeng.2009.10.024
Isengard, H. D., & Schultheiß, D. (2003). Water determination in honey – Karl Fischer titration, an alternative to refractive index measurements? Food Chemistry, 82, 151–154. https://doi.org/10.1016/S0308-8146(02)00543-5
Isengard, H. D., Schultheiß, D., Radovic´, B., & Anklam, E. (2001). Alternatives to official analytical methods used for the water determination in honey. Food Control, 12, 459–466. DOI: https://doi.org/10.1016/S0956-7135(01)00044-5
Karabagias, I. K, Badeka, A. V, Kontakos, S., Karabournioti, S, & Kontominas, M. G. (2014). Botanical discrimination of Greek unifl oral honeys with physi-co-and chemometric analyses. Food Chemistry, 165, 181-190. DOI: https://doi.org/10.1016/j.foodchem.2014.05.033
Kek, S. P., Chin, N. L, Yusof, Y. A, Tan, S. T, Chua, L. S. (2017). Classification of entomological origin of honey based on its physicochemical and antioxidant properties. International Journal of Food Properties, 20(3), 2723-2738. DOI: https://doi.org/10.1080/10942912.2017.1359185
Lazarević, K. B., Jovetić, M. S., & Tešić, Ž. L. J (2017). Physicochemical parameters as a tool for the assessment of origin of honey. Journal of AOAC International, 100(4), 840-851. DOI: https://doi.org/10.5740/jaoacint.17-0143
Manikis, I., & Thrasyvoulou, A. (2001). The relation of physicochemical characteristics of honey and the crystallization sensitive parameters. Apiacta, 36, (2), 106-112.
Namini, N. Z., Mousavi, M. H., Mahmoudi, R., & Hassanzadeh, P. (2018). Hygienic quality of the honey samples produced in the Iran in comparison with international standards. International Food Research Journal, 25(3), 982-988. DOI: 10.1155/2022/3827742
Nyau, V., Mwanza, P., & Moonga, B. (2013). Physicochemical qualities of honey harvested from different beehive types in Zambia. African Journal of Food Agric. Nutrition and Development, 13(2), 7415-7427. DOI: 10.13140/RG.2.1.4564.8244
Obiegbuna, J. E., Osajiele, B. O., Ishiwu, C. N. 2017. Quality evaluation of awka market honey and honey from beekeepers in two floral regions of Anambra State, Nigeria. American Journal of Food Science and Technology, 5(4), 149-155. DOI: 10.12691/ajfst-5-4-5
Roubik, D. W. (1983). Nest and colony characteristics of stingless bees from Panamá (Hymenoptera: Apidea). Journal Kansas of Entomological Society. 56, 327–355. ISSN: 0022-8567
Sanchez, V., Baeza, R., Ciappini, C., Zamora, M. C., & Chirife, J. (2010). Comparison between Karl Fischer and refratrometric method for determination of water content in honey. Food control, 21(3), 339-341. DOI: https://doi.org/10.1016/j.foodcont.2008.08.022
Scholz, E. (1984). Karl Fischer titration. Berlin: Springer.
De Sousa, J. M. B., de Souza, E. L., Marques, G., de Toledo Benassi, M., Gullón, B., Pintado, M. M., & Magnani, M. (2016). Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT-Food Science and Technology, 65, 645-651. DOI: https://doi.org/10.1016/j.lwt.2015.08.058
Torres, A., Garedew, A., Schmolz, E., Lamprecht, I. (2004). Calorimetric investigation of the antimicrobial action and insight into the chemical properties of “angelita” honey – a product of the stingless bee Tetragonisca angustula from Columbia. Thermochim. Acta, 415, 107–113. DOI: https://doi.org/10.1016/j.tca.2003.06.005
Valdés-Silverio, L. A., Iturralde, G., García-Tenesaca, M., Paredes-Moreta, J., Narváez-Narváez, D. A., Rojas-Carrillo, M., ... & Alvarez-Suarez, J. M. (2018). Physicochemical parameters, chemical composition, antioxidant capacity, microbial contamination and antimicrobial activity of Eucalyptus honey from the Andean region of Ecuador. Journal of Apicultural Research, 57(3), 382-394. DOI: https://doi.org/10.1080/00218839.2018.1426349
Viuda-Martos, M., Ruiz-Navajas, Y., Zaldivar-Cruz, J., Kuri, V., Juana Fernan-dez-Lopez, J., Carbonell-Barrachina, A., & Perez-Alvarez, J. (2010). Aroma profile and physicochemical properties of artisanal honey from Tabasco, Mexico. International Journal of Food Science and Technology, 45, 1111-1118. DOI: https://doi.org/10.1111/j.1365-2621.2010.02243.x
Vit, P., Medina, M., Enríquez, M. E. (2004). Quality standards for medicinal uses of Meliponea honey in Guatamala, Mexico and Venezuela. Bee World, 85, 2–5. DOI: 10.1080/0005772X.2004.11099603
Zamora, M. C., Chirife, J., & Roldán, D. (2006). On the nature of the relationship between water activity and% moisture in honey. Food control, 17(8), 642-647. DOI: https://doi.org/10.1016/j.foodcont.2005.04.002
License
Copyright (c) 2023 Andi Gita Maulidyah Indraswari Suhri, Irnayanti Bahar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.