Germination Capacity of Helianthus annuus Less Seeds on Soil Media Contaminated by Waste
Authors
Wahyu Lestari , Sujarwati , Atria Martina , Imelda Wardani , DaryonoDOI:
10.29303/jbt.v23i2.4821Published:
2023-03-14Issue:
Vol. 23 No. 2 (2023): April-JuneKeywords:
root, seed germination, shoot, Total Petroleum Hydrocarbons (TPH), waste used oil.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Used oil waste is often dumped on the ground around the workshop, causing soil pollution which can reduce the function of the soil. The most difficult contaminants in used oil waste to decompose are hydrocarbon compounds, which are highly toxic, polycyclic aromatic hydrocarbons (PAHs). The concentration of oil hydrocarbon contaminants in a sample is determined by measuring the total petroleum hydrocarbon (TPH) concentration. This study was conducted to determine the germination ability of Helianthus anuus, Less seeds on soil media contaminated with waste oil at different concentrations of Total Petroleum Hydrocarbon (TPH). The results showed that the concentration of TPH in the media could inhibit the speed of seed germination. Treatment with low concentration of TPH 2.7% in the media increased % germination, shoot and root length and sprout biomass compared to the medium/intermediate (8.00%) and high (12.26%) TPH treatments and controls. However, there was no significant difference between all treatments regarding germination time and shoot length, although in the low TPH treatment (2.70%) there was a tendency for germination time to be faster than the other treatments, as well as to shoot length which was longer than the other treatments. The higher TPH concentration in the media can inhibit germination time, germination percentage, shoot and root length and biomass. Morphological observations of the growth of sprouts showed an inhibition of root hair formation along with the high TPH content in the media, but all treatments did not affect the growth of the shoots.
References
Akpokodje O.I, Uguru H., Esegbuyota D. (2019). Evaluation of phytoremediation potentials of different plant varieties in petroleum products polluted soil. Global Journal of Earth and Environmental Science 4(3): 41-46.
Alfianti R., Lestari W., Martina A., Roza R.M., Jadmika E.S. (2016). Efektifitas jamur ligninolitik (Penicillium PNE4 dan Aspergillus sp.2) dan Mucuna bracteata (Dc.) sebagai agen bioremediasi tanah terkontaminasi hidrokarbon minyak bumi. Prosiding Seminar Nasional Perhimpunan Ilmu Pemuliaan Indonesia (PERIPI): 379-385. Pekanbaru, 20 Juli 2016. ISBN: 978-979-792-732-5.
Ali M. (2012). Monografi Tinjauan Proses Bioremediasi Melalui Pengujian Tanah Tercemar Minyak. Surabaya: UPN Press.
Al-Mailem DM., Sorkhoh NA., Marafie M., AI-Awadhi H., Eliyas M., Radwan SS. (2010). Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresource Technology, 10(1): 5786-5792.
Charles U.U., Dennis E.I., Nkereuwem J.M. (2013). Application of phyto-remediation (Sunflower and Vetiver Grass) on crude oil spilled soil cultivated to Jute Mallow (Corchorus Olitorius L.). Resources and Environment. 3(6): 169-175 DOI: 10.5923/j.re.20130306.01
Dave D., Ghaly A.E. (2011). Remediations technologies of marine oil spills: a critical review and comparative analysis. American Journal of Environmental Sciences, 7(5), 423-440.
Das Kishore, Mukherjee AK. (2007). Crude petroleum-oil biodegradation efficiency of bacillus subtilis and pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from north east India. Journal of Bioresource Technology, 98(7): 1339-1345.
de Oliveira PJRG, Vieira LC, Nogueira AV, Corseuil HX, Mezzari MP. (2012). Tolerance of tree reforestation species (Schizolobium parahyba, Mimosa scabrella and Enterolobium contortisiliquum) to gasoline and diesel phytotoxicity assays. Journal Bioremediation Biodegradation; S7:004. doi:10.4172/2155-619.S7-004.
Dieta YA., Hendrasarie N. (2019). Kemampuan adsorpsi Pb dari limbah industri oleh tumbuhan Kayu Ambang (Lemna minor), Kayu Apu (Pistia stratiotes) dan Eceng Gondok (Eichhornia crassipes Solm). Jurnal Envirotek, 11: 39–45.
Francis E. (2017). Phytoremediation potentials of sunflower (Helianthus annuus L.) Asteraceae on contaminated soils of abandoned dumpsites. International Journal of Scientific & Engineering Research 8(1): 1751-1757.
Garapati V.M. (2012). Biodegradation of Petroleum Hydrocarbon [Thesis]. Odisha: National Institute of Technology.
Hidayah EN., Djalalembah A., Asmar G.A., Cahyonugroho O.H. (2018). Pengaruh aerasi dalam constructed wetland pada pengolahan air limbah domestik. Jurnal Ilmu Lingkungan, 16(2): 155.
Jing W., Zhang Z., Su Y., He W., He F., Song H. (2008). Phytoremediation of petroleum polluted soil. Petroleum Science, 5: 167-171.
Kay T., Okamoto Y., Murakami S., Tamaki M. (2020). Phytoremediation of oil-contaminated soils by combining flowering plant cultivation and inoculation with Acinetobacter junii Strain M-2. Journal of Agricultural Chemistry and Environment, 9: 107-120. DOI:10.4236/jacen.2020.93010.
Lestari W. (2015). Fitoremediasi tanah tercemar limbah oli menggunakan tanaman Amaranthus spinosus L. Prosiding Seminar Nasional BIOETI 3: 368-378. ISBN: 978-602-14989-0-3, Universitas Andalas, Padang.
Lestari W., Martina A., Roza RM., Wardani I. (2018). Potensi jamur indigenus riau (Penicillium sp.PN6) dan Neptunia oleracea untuk bioremediasi oil sludge. AL-KAUNIYAH; Journal of Biology. 11(1): 72-81
Martina A., Roza RM. (2014). Potensi jamur isolat lokal Riau sebagai agen mikoremediasi minyak bumi. Laporan Penelitian. Lembaga Penelitian. Universitas Riau.
Martina A., Lestari W., Roza R.M. (2016). Produksi giberelin dan biokontrol oleh jamur selulolitik dan ligninolitik indigenus Riau sebagai upaya pengembangan biofertilizer. Laporan Penelitian. Lembaga Penelitian dan Pengabdian Kepada Masyarakat. Universitas Riau.
Martins CDC., Liduino VS., Oliveira FJS., Servulo EFC. (2014). Phytoremediation of soil multi-contaminated with hydrocarbons and heavy metals using sunflowers. International Journal of Engineering & Technology IJET-IJENS 14(05): 1-6.
Merkl N., Schultze-Kraft R., Infante C. (2004). Phytoremediation in the tropicshe effect of crude oil on the growth of tropical plants. Bioremediation, 1(8): 177-184.
Mujab AS. (2012). Penggunaan Bio-kompos dalam Bioremediasi Lahan Tercemar Limbah Lumpur Minyak Bumi [Skripsi]. Jakarta: Universitas Islam Syarif Hidayatullah.
Nwaichi EO., Chukwuere CO., Abosi PJ., Onukwuru GI. (2021). Phytoremediation Of Crude Oil Impacted Soil Using Purple Nutsedge. J. Appl. Sci. Environ. Manage, 25(3): 475-479.
Odebode AJ., Njoku KL., Adesuyi AA., Akinola MO. (2021). Phytoremediation of spent oil and palm kernel sludge contaminated soil using sunflower (Helianthus annuus L.). J. Appl. Sci. Environ. Manage. 25(5): 877-885.
Qixing Z., Zhang C., Zhineng Z., Weitao LIU. (2011). Ecological remediation of hidrocarbon contaminated soils with weed plant. Journal of Resources and Ecology. 2(2): 97-105.
Sangeetha J., Thangadurai, D. (2014). Effect of biologically treated petroleum sludge on seed. germination and seedling growth of Vigna unguiculata (L.) Walp. (Fabaceae). Brazilian Archives of Biology And Technology. 57(3): 427-433.
Siciliano SD., Germida 11., Banks K., Greer CW. (2003). Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Applied Environmental Microbiology, 69: 483-489.
Soikou V, Andrianos V, Stasinos S, Kostakis MG, Attiti S, Thomaidis NS, Zabetakis I. (2017). Metal uptake by sunflower (Helianthus annuus) irrigated with water polluted with chromium and nickel. Food. 6(51): 1-14.
Suryati T. (2015). Seleksi lima jenis rumput untuk fitoremediasi tanah tercemar minyak bumi. Jurnal Teknologi Lingkungan. 16(1): 31-36.
Tang KHD., Angela J. (2019). Phytoremediation of crude oil-contaminated soil with local plant species. Conf. Series: Materials Science and Engineering, 495: 1-11. doi:10.1088/1757-899X/495/1/012054.
Tejeda-Agredano MC, Gallego S, Vila J, Grifoll M, Ortega-Calvo JJ. Cantos M. (2013). Influence of the sunflower rizhosphere on biodegradation of PAHs in soil. Soil Biology & Biochemistry 57: 830-840.
Truu I., Karme L., Talpsep E., Heinaru E., Vedler E., Heinaru A. (2003). Phytoremediation of solid oil shale waste from the chemical industry. Acta Biotechnology, 23: 301-307.
Wang X Y, Feng J, Zhao J M. (2010). Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China. Environmental Monitoring and Assessment, 161: 271-280.
Wijayanti FD., Purnomo YS. (2021). Pengolahan limbah cair bengkel dengan menggunakan grease trap dan fitoremediasi. Jurnal Envirous, 2(1): 114-122. E-ISSN: 2777-1032 P-ISSN: 2777-1040.
License
Copyright (c) 2023 Wahyu Lestari, Sujarwati, Atria Martina, Imelda Wardani, Daryono
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.