Soil Properties Affecting Mercury (Hg) Adsorption-Desorption: Determine The Extent of Soil Pollution Risk
Authors
Puji Hapsari Hurum , Suwardji , Taufik Fauzi , A. A. Ketut SudharmawanDOI:
10.29303/jbt.v23i2.6157Published:
2023-12-13Issue:
Vol. 23 No. 2 (2023): Special IssueKeywords:
Adsorption, desorption, mercury, unlicensed gold mining, soil properties.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
One of the hazardous wastes generated from unlicensed gold mining is mercury. Mercury is a toxic metal that can have a negative impact on the environment such as reducing soil and water quality and disturbing human health. The presence of mercury in the soil is completely controlled by adsorption-desorption of various sorbents. Soil properties greatly affect the adsorption and desorption of mercury in the soil. Because different soil properties will adsorb and desorb mercury in different ways and amounts. The purpose of writing this article is to review the results of previous research on the adsorption-desorption of mercury in soil so as to determine the extent of the risk of soil and environmental pollution. The method used in this writing is to collect and process data sources from previous research published in scientific articles, books, and discussion results. The results show that soils with high organic matter, iron oxide and clay content can absorb more Hg2+. In addition, lower pH has more hydroxylated surfaces that can adsorb more Hg2+. Irreversibility was found where the amount released or desorbed was less than the adsorption of mercury.
References
Babiarz, C. L., Hurley, J. P., Hoffmann, S. R., Andren, A. W., Shafer, M. M., & Armstrong, D. E. (2001). Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters. Environmental Science and Technology, 35(24), 4773–4782. DOI: https://doi.org/10.1021/es010895v
Basta, N. T., Pantone, D. J., & Tabatabai, M. A. (1993). Path analysis of heavy metal adsorption by soil. Agronomy Journal, 85(5), 1054–1057. DOI: https://doi.org/10.2134/agronj1993.00021962008500050018x
Bernhoft, R. A. (2012). Mercury toxicity and treatment: A review of the literature. Journal of Environmental and Public Health, 2012. DOI: https://doi.org/10.1155/2012/460508
Booer, J. R. (1944). The behaviour of mercury compounds in soil. Annals of Applied Biology, 31(4), 340–359. DOI: https://doi.org/10.1111/j.1744-7348.1944.tb06747.x
Cao, X., Liu, X., Zhu, J., Wang, L., Liu, S., & Yang, G. (2017). Characterization of phosphorus sorption on the sediments of Yangtze River Estuary and its adjacent areas. Marine Pollution Bulletin, 114(1), 277–284. DOI: https://doi.org/10.1016/j.marpolbul.2016.09.026
Ding, X., Wang, R., Li, Y., Gan, Y., Liu, S., & Dai, J. (2017). Insights into the mercury(II) adsorption and binding mechanism onto several typical soils in China. Environmental Science and Pollution Research, 24(30), 23607–23619. DOI: https://doi.org/10.1007/s11356-017-9835-2
Gabriel, M. C., & Williamson, D. G. (2004). Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environmental Geochemistry and Health, 26(3–4), 421–434. https://doi.org/10.1007/s10653-004-1308-0
Ghabbour, E. A., & Davies, G. (2011). Environmental insights from Langmuir adsorption site capacities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 381(1–3), 37–40. DOI: https://doi.org/10.1016/j.colsurfa.2011.03.014
Hasni, H., Yani, S., Aladin, A., & Septiani, M. (2020). Kesetimbangan Proses Desorpsi Amonia Dari Arang Aktif Hasil Pirolisis Limbah Biomassa. Al Ulum Jurnal Sains Dan Teknologi, 5(2), 48. https://doi.org/10.31602/ajst.v5i2.2803
Henrianto, A., Okalia, D., & Mashadi, M. (2019). Uji Beberapa Sifat Fisika Tanah Bekas Tambang Emas Tanpa Izin ( Peti ) Di Tiga Kecamatan Di Daratan Sepanjang Sungai Kuantan. Jurnal Agronomi Tanaman Tropika (Juatika), 1(1), 19–31. DOI: https://doi.org/10.36378/juatika.v1i1.41
Hill, J. R., O’Driscoll, N. J., & Lean, D. R. S. (2009). Size distribution of methylmercury associated with particulate and dissolved organic matter in freshwaters. Science of the Total Environment, 408(2), 408–414. DOI: https://doi.org/10.1016/j.scitotenv.2009.09.030
Hindersah, R., Risamasu, R., Kalay, A. M., Dewi, T., & Makatita, I. (2018). Mercury contamination in soil, tailing and plants on agricultural fields near closed gold mine in Buru Island, Maluku. Journal of Degraded and Mining Lands Management, 5(2), 1027–1034. DOI: https://doi.org/10.15243/jdmlm.2018.052.1027
Huang, W. Y., Li, D., Liu, Z. Q., Tao, Q., Zhu, Y., Yang, J., & Zhang, Y. M. (2014). Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents. Chemical Engineering Journal, 236, 191–201. DOI: https://doi.org/10.1016/j.cej.2013.09.077
Jing, Y. D., He, Z. L., & Yang, X. E. (2007). Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere, 69(10), 1662–1669. DOI: https://doi.org/10.1016/j.chemosphere.2007.05.033
Jing, Y. D., He, Z. L., & Yang, X. E. (2008). Adsorption–Desorption Characteristics of Mercury in Paddy Soils of China. Journal of Environmental Quality, 37(2), 680–688. DOI: https://doi.org/10.2134/jeq2007.0221
Kim, C. S., Rytuba, J. J., & Brown, G. E. (2004). EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides: I. Effects of pH. Journal of Colloid and Interface Science, 271(1), 1–15. DOI: https://doi.org/10.1016/S0021-9797(03)00330-8
Kinniburgh, D. G., & Jackson, M. L. (1978). Adsorption of Mercury(II) by Iron Hydrous Oxide Gel. Soil Science Society of America Journal, 42(1), 45–47. DOI: https://doi.org/10.2136/sssaj1978.03615995004200010010x
Lale bidesari, Alfina Taurida, K. A. H. (2018). Identifikasi Sebaran Limbah Merkuri Di Desa Pelangan Kecamatan Sekotong Menggunakan Metode Geolistrilk. 1.
Liao, L., Selim, H. M., & DeLaune, R. D. (2009). Mercury Adsorption-Desorption and Transport in Soils. Journal of Environmental Quality, 38(4), 1608–1616. DOI: https://doi.org/10.2134/jeq2008.0343
Lu, X., & Jaffe, R. (2001). Interaction between Hg(II) and natural dissolved organic matter: A fluorescence spectroscopy based study. Water Research, 35(7), 1793–1803. DOI: https://doi.org/10.1016/S0043-1354(00)00423-1
Maslukah, L., Zainuri, M., Wirasatriya, A., & Widiaratih, R. (2020). Studi Kinetika Adsorpsi Dan Desorpsi Ion Fosfat (Po42-) Di Sedimen Perairan Semarang Dan Jepara. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 12(2), 385–396. DOI: https://doi.org/10.29244/jitkt.v12i2.32392
Mirdat, Patadungan, Yosep, S., & Isrun. (2013). Status Logam Berat merkuri (Hg) dalam Tanah pada Kawasan Pengolahan Tambang Emas di Kelurahan Poboya, Kota Palu. J. Agrotekbis, 1(2), 127–134.
Miretzky, P., Bisinoti, M. C., Jardim, W. F., & Rocha, J. C. (2005). Factors affecting Hg (II) adsorption in soils from the Rio Negro basin (Amazon). Quimica Nova, 28(3), 438–443. DOI: https://doi.org/10.1590/S0100-40422005000300014
Munawar, A., Intania, C., Barchia, M. F., Suhartoyo, H., & Asriani, P. S. (2022). Mercury Pollution from Small Scale Gold Mines in Agricultural Lands. 1018, 1–7. DOI: https://doi.org/10.1088/1755-1315/1018/1/012021
Nst, H., Yoga, G. P., & Darusman, L. K. (2012). Hubungan Karakteristik Sedimen Dasar Terhadap Kandungan Merkuri Akibat Pertambangan Emas Tanpa Ijin (Peti) Pongkor - Kab. Bogor. Photon: Jurnal Sain Dan Kesehatan, 2(2), 19–23. DOI: https://doi.org/10.37859/jp.v2i2.134
Obtained, H. (2022). Sorption of Mercury in Batch and Fixed-Bed Column System on.
Olson, C. I., Geyman, B. M., Thackray, C. P., Krabbenhoft, D. P., Tate, M. T., Sunderland, E. M., & Driscoll, C. T. (2022). Mercury in soils of the conterminous United States: Patterns and pools. Environmental Research Letters, 17(7), 74030. DOI: https://doi.org/10.1088/1748-9326/ac79c2
Palmieri, H. E. L., Nalini, H. A., Leonel, L. V., Windmöller, C. C., Santos, R. C., & de Brito, W. (2006). Quantification and speciation of mercury in soils from the Tripuí Ecological Station, Minas Gerais, Brazil. Science of the Total Environment, 368(1), 69–78. DOI: https://doi.org/10.1016/j.scitotenv.2005.09.085
Qu, R., Han, G., Liu, M., & Li, X. (2019). The mercury behavior and contamination in soil profiles in mun river basin, Northeast Thailand. International Journal of Environmental Research and Public Health, 16(21). DOI: https://doi.org/10.3390/ijerph16214131
Ramamoorthy, S., & Rust, B. R. (1978). Heavy metal exchange processes in sediment-water systems. Environmental Geology, 2(3), 165–172. DOI: https://doi.org/10.1007/BF02430670
Sauvé, S., Mcbride, M., & Hendershot, W. (1998). Lead phosphate solubility in water and soil suspensions. Environmental Science and Technology, 32(3), 388–393. DOI: https://doi.org/10.1021/es970245k
Schuster, E. (1991). The behavior of mercury in the soil with special emphasis on complexation and adsorption processes - A review of the literature. Water, Air, & Soil Pollution, 56(1), 667–680. DOI: https://doi.org/10.1007/BF00342308
Schnoor, J. (1996). Environmental Modeling. New York: John Wiley and Son
Seo, D. C., Yu, K., & DeLaune, R. D. (2008). Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: Batch and column experiments. Chemosphere, 73(11), 1757–1764. DOI: https://doi.org/10.1016/j.chemosphere.2008.09.003
Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Minerals Engineering, 19(2), 105–116. DOI: https://doi.org/10.1016/j.mineng.2005.08.006
Ssenku, J. E., Naziriwo, B., Kutesakwe, J., Mustafa, A. S., Kayeera, D., & Tebandeke, E. (2023). Mercury Accumulation in Food Crops and Phytoremediation Potential of Wild Plants Thriving in Artisanal and Small-Scale Gold Mining Areas in Uganda. Pollutants, 3(2), 181–196. DOI: https://doi.org/10.3390/pollutants3020014
Weber, J. H. (1993). Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment. Chemosphere, 26(11), 2063–2077. DOI: https://doi.org/10.1016/0045-6535(93)90032-Z
Yin, Y., Allen, H. E., Huang, C. P., & Sanders, P. F. (1997). Gebner & Lupia - When the Campaigns Matter.pdf. 31(2), 496–503.
Yin, Y., Allen, H. E., Li, Y., Huang, C. P., & Sanders, P. F. (1996). Adsorption of Mercury(II) by Soil: Effects of pH, Chloride, and Organic Matter. Journal of Environmental Quality, 25(4), 837–844. DOI: https://doi.org/10.2134/jeq1996.00472425002500040027x
Zarcinas, B. A., Pongsakul, P., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. 2. Thailand. Environmental Geochemistry and Health, 26(3), 359–371. DOI: https://doi.org/10.1007/s10653-005-4670-7
Zhou, J., Wang, Z., Zhang, X., Driscoll, C. T., & Lin, C. J. (2020). Soil-atmosphere exchange flux of total gaseous mercury (TGM) at subtropical and temperate forest catchments. Atmospheric Chemistry and Physics, 20(24), 16117–16133. DOI: https://doi.org/10.5194/acp-20-16117-2020
License
Copyright (c) 2023 Puji Hapsari Hurum, Suwardji, Taufik Fauzi, A. A. Ketut Sudharmawan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.