Effects of Glyphosate on Cognitive Development, Sensory Sensitivity and Locomotor Balance in Male Rats
Authors
Fadillah Fadillah , Reziq Marchellino Irwan , Muhamad Afif , Allimuddin Tofrizal , Elvina Zuhir , Rita MalizaDOI:
10.29303/jbt.v24i3.6978Published:
2024-07-30Issue:
Vol. 24 No. 3 (2024): July - SeptemberKeywords:
Cognitive test, glycophate, locomotor test, sensory tets.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Glycophate is the active ingredient in RoundupⓇ hebicide, which is commonly used in agriculture. Exposure to the herbicide glyphosate may affect the development of Parkinson Disease in humans. pre-natal and post-natal exposure to glyphosate exerts neurological effects and neuropsychiatric effects, even at low concentrations. This study aimed to examine the effects on cognitive, sensory and motor development in male rats exposed to the active ingredient glycophate in RoundupⓇ at various concentrations. In this study using test animals in the form of male rats with an age of 10 weeks, then the rats were divided into 4 treatment groups, namely the normal group, 100 µL, 50 µL, and 25 µL RoundupⓇ, induction was given orally every day for 4 weeks. Then at the last week, the body weight of the rats was measured and several tests were conducted to see the effect of glycophate induction on rat cognition through the morris water maze and y maze tests, sensory development through the hot plate test, and rat motor development through the hanging wire test. The results showed that glyphosphate administration affected the body weight of the rats, and affected the cognitive development of the rats. The 50 µL dose treatment group showed the most visible effect of glycophosphate exposure on cognitive tests compared to other groups. In the sensory test, the 50 µL ml dose treatment group also had low sensitivity compared to other groups, and low motor ability compared to other groups. Glycophate was seen to affect the cognitive, sensory and motor development of the rats.
References
Ainge, J.A., van der Meer, M.A., Langston, R.F., Wood, E.R., (2007). Exploring the role of context-dependent hippocampal activity in spatial alternation behavior. Hippocampus, 17 (10), 988–1002. doi: https://doi.org/10.1002/hipo.20301
Ait-Bali, Y., Ba-M’hamed, S., Gambarotta, G., Sassoè-Pognetto, M., Giustetto, M., & Bennis, M. (2020). Pre-and postnatal exposure to glyphosate-based herbicide causes behavioral and cognitive impairments in adult mice: Evidence of cortical ad hippocampal dysfunction. Archives of toxicology, 94, 1703-1723. doi: https://doi.org/10.1007/s00204-020-02677-7
Astiz, M., de Alaniz, M. J., and Marra, C. A. (2009). Effect of pesticides on cell survival in liver and brain rat tissues. Ecotoxicol. Environ. Saf. 72, 2025–2032. doi: 10.1016/j.ecoenv.2009.05.00101
Baier, C. J., Gallegos, C. E., Raisman-Vozari, R., & Minetti, A. (2017). Behavioral impairments following repeated intranasal glyphosate-based herbicide administration in mice. Neurotoxicology and teratology, 64,63-72. doi: 10.1016/j.ntt.2017.10.004
Bridi, D.; Altenhofen, S.; Gonzalez, J.B.; Reolon, G.K.; Bonan, C.D. (2017). Glyphosate and Roundup® alter morphology and behavior in zebrafish. Toxicology 2017, 392, 32–39. doi: 10.1016/j.tox.2017.10.007
Cattani, D., de Liz Oliveira Cavalli, V. L., Heinz Rieg, C. E., Domingues, J. T., Dal-Cim, T., and Tasca, C. I. (2014). Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: involvement of glutamate excitotoxicity. Toxicology 320, 34–45. doi: 10.1016/j. tox.2014.03.001
Cattani, D., Cesconetto, P. A., Tavares, M. K., Parisotto, E. B., De Oliveira, P. A., Rieg, C. E. H., & Zamoner, A. (2017). Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology, 387, 67-80. doi: https://doi.org/10.1016/j.tox.2017.06.001
Chen, X.P., Chen, W.Z., Wang, F.S., Liu, J.X., (2012). Selective cognitive impairments are related to selective hippocampus and prefrontal cortex deficits after prenatal chlorpyrifos exposure. Brain Res. 19–28. doi: 10.1016/j.brainres.2012.07.036
Cunnane, S.C.; Courchesne-Loyer, A.; Vandenberghe, C.; St-Pierre, V.; Fortier, M.; Hennebelle, M.; Croteau, E.; Bocti, C.; Fulop, T.; Castellano, C.-A. (2016). Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer’s Disease. Front. Mol. Neurosci. doi: 10.3389/fnmol.2016.00053
Faria, M.; Bedrossiantz, J.; Ramírez, J.R.R.; Mayol, M.; García, G.H.; Bellot, M.; Prats, E.; Garcia-Reyero, N.; Gómez-Canela, C.; Gómez-Oliván, L.M. (2020). Glyphosate targets fish monoaminergic systems leading to oxidative stress and anxiety. Environ. Int. doi: 10.1016/j.envint.2020.106253
Gallo, E. F., Salling, M. C., Feng, B., Moron, J. A., Harrison, N. L., Javitch, J. A.,. (2015). Upregulation of dopamine D2 receptors in the nucleus accumbens indirect pathway increases locomotion but does not reduce alcohol consumption. Neuropsychopharmacology 40, 1609–1618. doi: 10.1038/npp. 2015.11
Hatcher, J. M., Pennell, K. D., and Miller, G. W. (2008). Parkinson’s disease and pesticides: a toxicological perspective. Trends Pharmacol. Sci. 29, 322–329. doi: 10.1016/j.tips.2008.03.007
Hattori, K.. (2000). Cognitive deficits after focal cerebral ischemia in mice. doi: https://doi.org/10.1161/01.STR.31.8.1939
Holtzman, D. (1996). Brain Creatine Kinases and Phosphocreatine: An Update. Dev. Neurosci. 18, 522–523. doi
https://doi.org/10.1159/000111449
IARC, Cancer, (2015) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans-Glyphosate monograph: WHO. doi: 10.1016/j.tox.2017.06.001
Ibama, Diqua, D.d.Q.A., (2014) Boletim de Comercialização de Agrotóxicos e Afins Histórico de Vendas 2000–2012. Brasília, DF: Ministério do Meio Ambiente – MMA.
Larsen, K. E., Lifschitz, A. L., Lanusse, C. E., & Virkel, G. L. (2016). The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats. Environmental toxicology and pharmacology, 41–44. doi: 10.1016/j.etap.2016.05.012
Li, M. H., Xu, H. D., Liu, Y., Chen, T., Jiang, L., Fu, Y. H., & Wang, J. S. (2016). Multi-tissue metabolic responses of goldfish (Carassius auratus) exposed to glyphosate-based herbicide. Toxicology Research, 5(4), 1039-1052.doi: 10.1039/c6tx00011h.
Luna, S., Neila, L. P., Vena, R., Borgatello, C., & Rosso, S. B. (2021). Glyphosate exposure induces synaptic impairment in hippocampal neurons and cognitive deficits in developing rats. Archives of Toxicology, 95, 2137-2150. doi: 10.1007/s00204-021-03046-8.
Mesnage, R., Defarge, N., Spiroux de Vendômois, J., & Séralini, G. E. (2014). Major pesticides are more toxic to human cells than their declared active principles. BioMed research international, 2014. doi: https://doi.org/10.1155/2014/179691.
Mogensen, J., Hjortkjaer, J., Ibervang, K.L., Mogensen, J., Hjortkjær, J., Ibervang, K. L., Stedal, K., & Malá, H. (2007). Prefrontal cortex and hippocampus in posttraumatic functional recovery: spatial delayed alternation by rats subjected to transection of the fimbria–fornix and/or ablation of the prefrontal cortex. Brain Research Bulletin, 73(1-3), 86-95. doi: https://doi.org/10.1016/j.brainresbull.2007.02.006
Ostovar, M., Akbari, A., Anbardar, A., Iraji, M., Salmanpour, S. H., Ghoran, M., Heydari, M., dan Shams. (2019). Effects of Citrullus colocynthis L. in A Rat Model of Diabetic Neuropathy. Journal of Integrative Medicine. doi: 10.1016/j.joim.2019.12.002
Pereira, A.G.; Jaramillo, M.L.; Remor, A.P.; Latini, A.; Davico, C.E.; da Silva, M.L.; Müller, Y.M.; Ammar, D.; Nazari, E.M. (2018). Low-concentration exposure to glyphosate-based herbicide modulates the complexes of the mitochondrial respiratory chain and induces mitochondrial hyperpolarization in the Danio rerio brain. Chemosphere, doi: 10.1016/j.chemosphere.2018.06.075
Pu, Y., Chang, L., Qu, Y., Wang, S., Tan, Y., Wang, X., ... & Hashimoto, K. (2020). Glyphosate exposure exacerbates the dopaminergic neurotoxicity in the mouse brain after repeated administration of MPTP. Neuroscience Letters, 730, 135032. doi: 10.1016/j.chemosphere.2018.06.075
Rice, D., Barone Jr., S. (2000). Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 108 (Suppl. 3), 511–533. Doi: 10.1289/ehp.00108s3511
Shi, X., Bai, H., Wang, J., Wang, J., Huang, L., He, M., ... & Wang, J. (2021). Behavioral assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Frontiers in neurology, 12, 667511. 10.3389/fneur.2021.667511
Sobjak, T. M., Romão, S., do Nascimento, C. Z., Dos Santos, A. F. P., Vogel, L., & Guimarães, A. T. B. (2017). Assessment of the oxidative and neurotoxic effects of glyphosate pesticide on the larvae of Rhamdia quelen fish. Chemosphere, 182, 267-275. https://doi.org/10.1016/j.chemosphere.2017.05.031
License
Copyright (c) 2024 Fadillah Fadillah, Reziq Marchellino Irwan , Muhamad Afif , Allimuddin Tofrizal , Elvina Zuhir, Rita Maliza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.