Exploration of P-Solubilizing and IAA-producing Rhizobacteria from Saline Environments: Their Effects on Vigna radiata Growth-promotion
Authors
Ni Wayan Anggun Diah Utami , Lalu Zulkifli , Dewa Ayu Citra Rasmi , Prapti SedijaniDOI:
10.29303/jbt.v24i4.7968Published:
2024-11-07Issue:
Vol. 24 No. 4 (2024): Oktober - DesemberKeywords:
Rhizobacteria, bacteria, biofertilizer, IAA producing bacteria, phospate solubilizing.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Rhizobacteria that are able to dissolve P and produce IAA can be used as component of biofertilizers to help increase plant growth, which can be a more environmentally friendly fertilizer alternative compared to chemical fertilizers. Rhizobacteria originating from sub-optimal environments have the potential to overcome environmental stress such as osmotic stress. To obtain potential isolates that can be used as biofertilizer, exploration of the rhizosphere of the sentigi (Pemphis acidula) has been carried out from the coast of Gili Sulat, Lombok. The method for isolating and selecting IAA producing bacteria was carried out using the colorimetric test method, while for the P solubilization ability, it was carried out by growing rhizobacteria on Pikovskaya media. Isolate PA6 with the highest IAA producing ability (21 ppm) and PL4 with the highest P solubilizing ability (20.9 ppm), were tested for their effect on the growth-promotion of Vigna radiata cultured on Murphy agar media by measuring the parameters of plant height, root length, fresh weight, and plant dry weight. Based on the One Way ANOVA statistical analysis with a p value ≤ 0.05, it showed that the inoculation of IAA-producing and P solvent rhizobacteria was proven to be able to have a significant effect with significantly different results on increasing plant dry weight. In the future, the isolate obtained can be developed into a biofertilizer component that can be applied in saline and dryland agriculture.
References
Alemneh, A.A., Zhou, Y., Ryder, M.H., & Denton, M.D. (2022). Soil environment influences plant growth-promoting traits of isolated rhizobacteria. Pedobiologia, 90, 150785. https://doi.org/10.1016/j.pedobi.2021.150785
Alfiansyah, M. F., Zulkifli, L. ., & Rasmi, D. A. C. . (2023). the effect of phosphate-solubilizing bacteria and iaa producers from cactus rhizosphere on the germination of Vigna sinensis L. Jurnal Biologi Tropis, 23(3), 607–618. https://doi.org/10.29303/jbt.v23i3.5089
Anggraini, I., Ferniah R. S., dan Kusdiyanti E. (2019). Isolasi khamir dari batang tanaman tebu dan identifikasinya berdasarkan sekuens internal transcribed spacer. Jurnal Bioteknologi & Biosains Indonesia, 6(1): 39-52.
Arsina, T. S. W., & Asri, M. T. (2019). Potensi isolat bakteri endofit akar tanaman bawang merah (Allium ascalonium) sebagai bakteri pelarut fosfat. Jurnal Fitopatologi Indonesia, 8(3): 260-267. http://ejournal.unesa.ac.id/index.php/lenterabio
Bhaskoro, A. W., Kusumarini N., & Syekhfani. (2015). Efisiensi pemupukan nitrogen tanaman sawi pada inceptisol melalui aplikasi zeolit alam. Jurnal Tanah dan Sumberdaya Lahan, 2(2): 219-226. https://jtsl.ub.ac.id/index.php/jtsl/article/view/132
Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World journal of microbiology & biotechnology, 28(4), 1327–1350. https://doi.org/10.1007/s11274-011-0979-9
Cappuchino, J. G., & Sherman, N. (2014). Mcrobyology: a laboratory manual – 10th ededition. Pearson. ISBN 10: 0-321-840224.
Duca, D. R., & Glick, B. R. (2020). Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Applied microbiology and biotechnology, 104(20), 8607–8619. https://doi.org/10.1007/s00253-020-10869-5
Ehmann, A. (1977). The Van Urk-Salkowski Reagent—A Sensitive and Specific Chromogenic Reagent for Silica Gel Thin-Layer Chromatographic Detection and Identification of Indole Derivatives. Journal of Chromatography A, 132, 267-276. https://doi.org/10.1016/S0021-9673(00)89300-0
Erturk, Y., Ercisli, S., Haznedar, A., and Cakmakci, R. (2010). Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol. Res, 43, 91–98. doi: 10.4067/s0716-97602010000100011
Ghosh, P. K., Saha, P., Mayilraj, S., & Maiti, T. K. (2013). Role of IAA metabolizing enzymes on production of IAA in root, nodule of Cajanus cajan and its PGP Rhizobium sp. Biocatalysis and Agricultural Biotechnology, 2(3): 234-239. https://doi.org/10.1016/j.bcab.2013.04.002
Gómez-Godínez, L. J., Aguirre-Noyola, J. L., Martínez-Romero, E., Arteaga-Garibay, R. I., Ireta-Moreno, J., & Ruvalcaba-Gómez, J. M. (2023). A Look at Plant-Growth-Promoting Bacteria. Plants (Basel, Switzerland), 12(8), 1668. https://doi.org/10.3390/plants12081668
Joko, T., Istiqomah D., Windari U., & Hardini P. A. (2015). Pengaruh PGPR terhadap pertumbuhan planlet jagung dan antagonismenya terhadap jamur terbawa benih secara In Vitro. Seminar Nasional Hasil Penelitian Pertanian 2015, Fakultas Pertanian Universitas Gadjah Mada. https://www.researchgate.net/publication/316189887_Pengaruh_PGPR_terhadap_Pertumbuhan_Planlet_Jagung_dan_Antagonismenya_terhadap_Jamur_Terbawa_Benih_secara_In_Vitro
Kosasi, C., Lolo W. A., dan Sudewi S. (2019). Isolasi dan uji aktivitas antibakteri dari bakteri yang berasosiasi dengan alga turbinaria ornata (Turner). Pharmaco, 8(2): 351-359.
Lebrazi, S., Niehaus, K., Bednarz, H., Fadil, M., Chraibi, M., & Fikri-Benbrahim, K. (2020). Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. Journal, genetic engineering & biotechnology, 18(1), 71. https://doi.org/10.1186/s43141-020-00090-2
Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of soil science and plant nutrition, 13(3): 638-649.
Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., Khan, A., & AL-Harrasi, A. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, 209(2018): 21-32. https://doi.org/10.1016/j.micres.2018.02.003
Oksana., Irfan M., Fianiray A. R., dan Zam S. I. (2020). Isolasi dan Identifikasi Bakteri Pelarut Fosfat pada Tanah Ultisol di Kecamatan Rumbai, Pekanbaru. Agrotech. Res. J. 4 (1): 22-25.
Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & LópezBucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signal. Behav.4, 701–712. doi: 10.4161/psb.4.8.9047
Pande, A., Pandey, P., Mehra, S., Singh, M., & Kaushik, S. (2017). Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. Journal, genetic engineering & biotechnology, 15(2), 379–391. https://doi.org/10.1016/j.jgeb.2017.06.005
Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and environmental microbiology, 68(8), 3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
Pattuju, S. M., Fatimawali., dan Manampiring A. (2014). Identifikasi bkateri resisten merkuri pada urine feses dan kalkulus gigi pada individu di kecamatan malalayang, manado, Sulawesi Utara. Jurnal e-Biomedik. 2 (2): 532-540.
Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya, 17, 362-370.
Reyes, I., Bernier, L., Simard, R. R., & Antoun, H. (1999). Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology, 28 (3): 281–290.
Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, 17(4-5), 319–339. https://doi.org/10.1016/s0734-9750(99)00014-2
Sashidhar, B., & Podile, A. R. (2010). Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of applied microbiology, 109(1), 1–12. https://doi.org/10.1111/j.1365-2672.2009.04654.x
Sharman, S. B., Sayyed, R. Z., Trivedi, M. H. & Gobi, T. A. (2013). Phospate solubilizing microbes: sustainabel approach for mnaging phosporus deficiency in agricultural soil. Springer Plus 2, 587. https://doi.org/10.1186/2193-1801-2-587
Sharma, S., Kumar, V., & Tripathi, R. B. (2011). Isolation of phospate solubilizing microorganism (PSMs) from soil. Journal of Microbiology and Biotechnology Research. 1(2): 90-95.
Sharon, J. A., Hathwaik L.T., Glenn G.M., Imam S. H., & Lee C. C. (2016). Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. Journal of Soil Science and Plant Nutrition, 16(2): 525-536. http://dx.doi.org/10.4067/S0718-95162016005000043
Silva, F. G. N., & Vidor, C. (2000). Solubilização de fosfato por microrganismos na presença de fontes de carbono. Rev Bras Cienc Solo. 24: 311-319. DOI: https://doi.org/10.1590/S0100-06832000000200008
Solano, C., Artola, A., Barrena, R., Ballardo, C., & Sanchez, A. (2023). Effect of the Exogenus application of indole-3-acetic acid as a growth regulator on onion (Alium cepa L.) cultivation. Jurnal Agronomy, 13(9): 2204. https://doi.org/10.3390/agronomy13092204
Sunita, K., Mishra, I., Mishra, J., Prakash, J., & Arora, N. K. (2020). Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants. Frontiers in microbiology, 11, 567768. https://doi.org/10.3389/fmicb.2020.567768
Tang, J., Li, Y., Zhang, L., Mu, J., Jiang, Y., Fu, H., Zhang, Y., Cui, H., Yu, X., & Ye, Z. (2023). Biosynthetic pathways and functions of Indole-3-Acetic Acid in microorganisms. Microorganisms, 11(8), 2077. https://doi.org/10.3390/microorganisms11082077
Tsotetsi, T.; Nephali, L.; Malebe, M.; & Tugizimana, F. (2022). Bacillus for plant growth promotion and stress resilience: what have we learned? Plants, 11, 2482. https://doi.org/10.3390/plants11192482
Wu, F., Li, J., Chen, Y., Zhang, L., Zhang, Y., Wang, S., Shi, X., Li, L., & Liang, J. (2019). Effects of phospate solubilizing bacteria on the growth, photeosynthesis, and nutrien uptake of Camellia oleifera Abel. Forest, 10, 348; doi:10.3390/f10040348.
Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in plant science, 14(1), 1–4. https://doi.org/10.1016/j.t
Zhu, F., Qu, L., Hong, X., & Sun, X. (2011). Isolation and Characterization of a Phosphate-Solubilizing Halophilic Bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evidence-based complementary and alternative medicine : eCAM, 2011, 615032. https://doi.org/10.1155/2011/615032
Zulkifli, L., Sedijani, P., Rasmi., D. A. C., & Amrullah, L. W. Z. (2020). Screening and molecular identification of phosphate-solubilizing rhizobacteria from mangrove ecosystem of the Lombok island. Jurnal Biologi Tropis, 20(3): 475-484. http://dx.doi.org/10.29303/jbt.v20i3.1730
Author Biography
Lalu Zulkifli, (SCOPUS ID: 15066284800) Pendidikan Biologi, FKIP Universitas Mataram
Pendidikan Biologi
License
Copyright (c) 2024 Ni Wayan Anggun Diah Utami, Lalu Zulkifli, Dewa Ayu Citra Rasmi, Prapti Sedijani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.