Bibliometric Insights on Mangrove Actinobacteria's Secondary Metabolites as Antibiotics Using VOSviewer
Authors
Rubiyatna Sakaroni , Nora Listantia , Dyah Puspitasari NingthiasDOI:
10.29303/jbt.v24i1b.8147Published:
2024-12-15Issue:
Vol. 24 No. 1b (2024): Special IssueKeywords:
Actinobacteria, antibiotics, bibliometric analysis, mangrove, secondary metabolites.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Secondary metabolites from actinobacteria have been known to have many potentials as antioxidants, antibiotics, anti-cancer, and others. Various studies have been conducted and published regarding the findings of the potential of actinobacteria. This study aims to determine the development of research related to the potential of actinobacteria originating from mangrove areas and their secondary metabolites as natural antibiotics with bibliometric methods assisted by the VOS Viewer application. The articles used in this study are articles published from 2014 to 2024 and taken from the PubMed database. A total of 78 articles analyzed with VOS Viewer showed that over the past decade, the development of research on this topic still revolves around actinobacteria, microbial sensitivity tests, anti-bacterial agents, and Streptomyces as indicated by the high occurrence of these words in the titles and abstracts of the articles analyzed. The potential for research development can be directed at antineoplastic agents, cell proliferation, and mass spectrometry because the use of these terms is still minimal. However, analysis using other databases is needed as a comparison to get clearer results related to the development of research on the potential of actinobacteria derived from mangroves and their secondary metabolites as antibitoics.
References
Al-amoudi, S., Essack, M., Simões, M. F., Bougouffa, S., Soloviev, I., Archer, J. A. C., Lafi, F. F., & Bajic, V. B. (2016). Bioprospecting Red Sea Coastal Ecosystems for Culturable Microorganisms and Their Antimicrobial Potential. Marine Drugs, 14(165), 1–14. https://doi.org/10.3390/md14090165
Al-amoudi, S., Razali, R., Essack, M., Amini, M. S., Bougouffa, S., Archer, J. A. C., La, F. F., & Bajic, V. B. (2016). Metagenomics as a preliminary screen for antimicrobial bioprospecting Metagenomics as a preliminary screen for antimicrobial bioprospecting. Gene Journal, 1–12. https://doi.org/10.1016/j.gene.2016.09.021
Amrita, K., Nitin, J., & Devi, C. S. (2012). Novel bioactive compounds from mangrove derived actinomycetes. International Research Journal of Pharmacy, 3(9), 25–29.
Aribowo, E. K. (2019). Analisis Bibliometrik Berkala Ilmiah Names: Journal of Onomastics dan Peluang Riset Onomastik di Indonesia. Aksara, 31(1), 85–106. https://doi.org/10.29255/aksara.v31i1.373.85-105
Arumugam, T., Kumar, P. S., Hemavathy, R. V, Swetha, V., & Sri, R. K. (2018). Isolation , structure elucidation and anticancer activity from Brevibacillus brevis EGS 9 that combats Multi Drug Resistant actinobacteria. Microbial Pthogenesis, 115(December 2017), 146–153. https://doi.org/10.1016/j.micpath.2017.12.061
Arumugam, T., & Senthil Kumar, P. (2017). Optimization of media components for production of antimicrobial compound by Brevibacillus brevis EGS9 isolated from mangrove ecosystem. Journal of Microbiological Methods, 142(July), 83–89. https://doi.org/10.1016/j.mimet.2017.09.010
Arumugam, T., Senthil Kumar, P., Kameshwar, R., & Prapanchana, K. (2017). Screening of novel actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India. Microbial Pathogenesis, 107, 225–233. https://doi.org/10.1016/j.micpath.2017.03.035
Azman, A., Othman, I., Velu, S. S., & Chan, K. (2015). Mangrove rare actinobacteria : taxonomy , natural compound , and discovery of bioactivity. Frontiers in Microbiology, 6(August), 1–15. https://doi.org/10.3389/fmicb.2015.00856
Balakrishnan, S., Santhanam, P., & Srinivasan, M. (2016). Larvicidal potency of marine actinobacteria isolated from mangrove environment against Aedes aegypti and Anopheles stephensi. Journal of Parasitic Diseases. https://doi.org/10.1007/s12639-016-0812-3
Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-vaillant, N., Jacquard, C., Klenk, H., Clément, C., Ouhdouch, Y., & Wezel, P. Van. (2016). Taxonomy , Physiology , and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews, 80(1), 1–43. https://doi.org/10.1128/MMBR.00019-15.Address
Baskaran, R., Mohan, P. M., Sivakumar, K., & Kumar, A. (2016). ANTIMICROBIAL ACTIVITY AND PHYLOGENETIC ANALYSIS OF STREPTOMYCES PARVULUS DOSMB-D105 ISOLATED FROM THE MANGROVE SEDIMENTS OF ANDAMAN ISLANDS. Acta Microbiologica et Immunologica Hungarica, 63(1), 27–46. https://doi.org/10.1556/030.63.2016.1.2
Bibi, F., Ullah, I., Alvi, S. A., Bakhsh, S. A., Yasir, M., Al-Ghamdi, A. A. K., & Azhar, E. I. (2017). Isolation, diversity, and biotechnological potential of rhizo- and endophytic bacteria associated with mangrove plants from Saudi Arabia. Genetics and Molecular Research, 16(2), 1–12. https://doi.org/10.4238/gmr16029657
Biswas, K., Bhattarcharya, D., Saha, M., Mukherjee, J., & Karmakar, S. (2021). Evaluation of antimicrobial activity of the extract of Streptomyces euryhalinus isolated from the Indian Sundarbans. Archives of Microbiology, 204(1).
Bodhaguru, M., Prakash, S., Ramasubburayan, R., Ahila, N. K., Mariselvam, L., Immanuel, G., Palavesam, A., & Kannapiran, E. (2019). Microbial Pathogenesis Screening , partial puri fi cation of antivibriosis metabolite sterol-glycosides from Rhodococcus sp . against aquaculture associated pathogens. Microbial Pthogenesis, 134, 1–11. https://doi.org/10.1016/j.micpath.2019.103597
Cândido, E. de S., de Barros, E., Cardoso, M. H., & Franco, O. L. (2019). Bacterial cross-resistance to anti-infective compounds. Is it a real problem? Current Opinion in Pharmacology, 48, 76–81. https://doi.org/10.1016/j.coph.2019.05.004
Cartuche, L., Reyes-batlle, M., Sifaoui, I., Arberas-jim, I., Piñero, J. E., Fern, J., Lorenzo-morales, J., & Ana, R. D. (2019). Antiamoebic Activities of Indolocarbazole Metabolites Isolated from Streptomyces sanyensis Cultures. Marine Drugs, 17(588), 1–15.
Chen, L., Chai, W., Wang, W., Song, T., Lian, X. Y., & Zhang, Z. (2017). Cytotoxic Bagremycins from Mangrove-Derived Streptomyces sp. Q22. Journal of Natural Products, 80(5), 1450–1456. https://doi.org/10.1021/acs.jnatprod.6b01136
Ek-ramos, M. J., Gomez-flores, R., Orozco-flores, A. A., Rodríguez-padilla, C., González-ochoa, G., Tamez-guerra, P., & Tamez-guerra, P. (2019). Bioactive Products From Plant-Endophytic Gram-Positive Bacteria. Frontiers in Microbiology, 10(March), 1–12. https://doi.org/10.3389/fmicb.2019.00463
Fu, S., Wang, F., Li, H., Bao, Y., Yang, Y., Shen, H., & Zhou, G. (2016). Secondary metabolites from marine-derived Streptomyces antibioticus strain H74-21. Natural Product Research. https://doi.org/10.1080/14786419.2016.1201668
Ghosh, A., Saha, R., & Bhadury, P. (2022). Metagenomic insights into surface water microbial communities of a South Asian mangrove ecosystem. PeerJ, 1–23. https://doi.org/10.7717/peerj.13169
Gopikrishnan, V., Radhakrishnan, M., Shanm, T., Ramakodi, M. P., & Balagurunathan, R. (2019). Isolation , characterization and identification of antibiofouling metabolite from mangrove derived Streptomyces sampsonii PM33. Scientific Reports, 9(February), 1–10. https://doi.org/10.1038/s41598-019-49478-2
Govindarajan, G., Kamaraj, R., Balakrishnan, K., Santhi, V. S., & Jebakumar, S. R. D. (2017). In-vitro assessment of antimicrobial properties and lymphocytotoxicity assay of benzoisochromanequinones polyketide from Streptomyces sp JRG-04. Microbial Pathogenesis, 110, 117–127. https://doi.org/10.1016/j.micpath.2017.06.034
Govindarajan, G., Mullick, P., Samuel Raj, B. A., Kumar, P. S., Al-Ansari, M. M., Ilavenil, S., & Jebakumar Solomon, R. D. (2021). Susceptibility pattern of methicillin resistance Staphylococcus aureus (MRSA) by flow cytometry analysis and characterization of novel lead drug molecule from Streptomyces species. Journal of Infection and Public Health, 14(12), 1831–1841. https://doi.org/10.1016/j.jiph.2021.11.001
Govindarajan, G., Satheeja Santhi, V., & Jebakumar, S. R. D. (2014). Antimicrobial potential of phylogenetically unique actinomycete, Streptomyces sp. JRG-04 from marine origin. Biologicals, 42(6), 305–311. https://doi.org/10.1016/j.biologicals.2014.08.003
Haddad, M. F., Abdullah, B. A., AlObeidi, H. A., Saadi, A. M., & Haddad, M. F. (2024). Antibiotic classification, mechanisms, and indications: A review. International Journal of Medical and All Body Health Research, 5(3), 39–46. https://doi.org/10.54660/ijmbhr.2024.5.3.39-46
He, F., Li, X., Yu, J.-H., Zhang, X., Nong, X., Chen, G., Zhu, K., Wang, Y.-Y., Bao, J., & Zhang, H. (2019). Secondary metabolites from the mangrove sediment-derived fungus PEnicillium pinophilum SCAU037. Fitoterapia, 136(104177). https://doi.org/https://doi.org/https://doi.org/10.1016/j.fitote.2019.104177
Hu, D., Chen, Y., Sun, C., Jin, T., Fan, G., Liao, Q., Mok, K. M., & Lee, M. S. (2018). Genome guided investigation of antibiotics producing actinomycetales strain isolated from a Macau mangrove ecosystem. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-32076-z
Hu, D., Gao, C., Sun, C., Jin, T., Fan, G., Mok, K. M., Ming-, S., & Lee, Y. (2019). Genome-guided and mass spectrometry investigation of natural products produced by a potential new actinobacterial strain isolated from a mangrove ecosystem in Futian , Shenzhen , China. Scientific Reports, 1, 1–12. https://doi.org/10.1038/s41598-018-37475-w
Hu, D., Lee, S. M., Li, K., & Mok, K. M. (2021). Secondary Metabolite Production Potential of Mangrove-Derived Streptomyces olivaceus. Marine Drugs, 19(332), 1–7.
Hu, D., Lee, S. M. Y., Li, K., & Mok, K. M. (2022). Exploration of Secondary Metabolite Production Potential in Actinobacteria Isolated From Kandelia candel Mangrove Plant. Frontiers in Marine Science, 9(April), 1–9. https://doi.org/10.3389/fmars.2022.700685
Hu, D., Sun, C., Jin, T., Fan, G., Mok, K. M., Li, K., Lee, S. M., & Lee, S. M. (2020). Exploring the Potential of Antibiotic Production From Rare Actinobacteria by Whole-Genome Sequencing and Guided MS / MS Analysis. Frontiers in Microbiology, 11(July), 1–12. https://doi.org/10.3389/fmicb.2020.01540
Huang, H., & Ju, J. (2018). Angucycline Glycosides from Mangrove-Derived Streptomyces diastaticus subsp. SCSIO GJ056. Marine Drugs, 16(185), 1–11. https://doi.org/10.3390/md16060185
Jiang, S., Yang, F. D. L. D. X., Weng, X. W. J., Feng, L., Zhang, L. Z. Y., Sun, Z. Z. Y., & Li, J. (2020). Ikarugamycin inhibits pancreatic cancer cell glycolysis by targeting hexokinase 2. Federation of American Societies for Experimental Biology Journal, 1–13. https://doi.org/10.1096/fj.201901237R
Jiang, Z., Hu, X., Xiao, L., Ren, Y., Shakhtina, A. N., Lukianov, D. A., Osterman, I. A., Sergiev, P. V, Dontsova, O. A., Wang, H., Wu, G., You, X., Sun, C., Hu, X., Xiao, L., Ren, Y., & Shakhtina, A. N. (2020). Beilunmycin , a new virginiamycins antibiotic from the antibacterial activity by inhibiting protein translation. Journal of Asian Natural Products Research, 1–9. https://doi.org/10.1080/10286020.2020.1810669
Jiang, Z., Tuo, L., Huang, D., Osterman, I. A., Tyurin, A. P., Lie, S., Lukyanov, D. A., & Sergiev, P. V. (2018). Diversity , Novelty , and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Natioanl Nature Reserve of Guangxi, China. Frontiers in Microbio, 9(May), 1–11. https://doi.org/10.3389/fmicb.2018.00868
Kalyani, B. S., Krishna, P. S., & Sreenivasulu, K. (2019). Screening and identification of novel isolate Streptomyces sp., NLKPB45 from Nellore costal region for its biomedical applications. Saudi Journal of Biological Sciences, 26(7), 1655–1660. https://doi.org/10.1016/j.sjbs.2018.08.027
Karthilk, Y., & Kalyani, M. I. (2023). Occurrence of Streptomyces tauricus in mangrove soil of Mangalore region in Dakshina Kannada as a source for antimicrobial peptide. Journal of Basic Microbiology, 63(3), 389–403.
Kemung, H. M., Tan, L. T., Chan, K., Ser, H., Law, J. W., Lee, L., & Goh, B. (2020). Streptomyces sp. Strain MUSC 125 from Mangrove Soil in Malaysia with Anti-MRSA, Anti-Biofilm and Antioxidant Activities. Molecules, 25, 1–20.
Kemung, H. M., Tan, L. T., & Khan, T. M. (2018). Streptomyces as a Prominent Resource of Future Anti-MRSA Drugs. Frontiers in Microbiology, 9(September), 1–26. https://doi.org/10.3389/fmicb.2018.02221
Kerry, R. G., Gouda, S., Sil, B., Das, G., Shin, H., Ghodake, G., & Patra, J. K. (2018). Cure of tuberculosis using nanotechnology : An overview. Journal of Microbiology, 56(5), 287–299. https://doi.org/10.1007/s12275-018-7414-y
Kirby, A. (2023). Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool. Publications, 11(1). https://doi.org/10.3390/publications11010010
Kumar, J. G. S. P., Gomathi, A., Vasconcelos, V., & Gothandam, K. M. (2018). Bioactivity Assessment of Indian Origin — Mangrove Actinobacteria against Candida albicans. Marine Drugs, 16(60), 1–18. https://doi.org/10.3390/md16020060
Kumar, R., Saxena, S., Kumar, V., Prabha, V., Kumar, R., & Kukreti, A. (2023). Service Innovation Research: a Bibliometric Analysis Using VOSviewer. Competitiveness Review: An International Business Journal. https://doi.org/https://doi.org/10.1108/cr-01-2023-0010
Kyeremeh, K., Acquah, K. S., Camas, M., Tabudravu, J., Houssen, W., Deng, H., & Jaspars, M. (2014). Butrepyrazinone, a New Pyrazinone with an Unusual Methylation Pattern from a Ghanaian Verrucosispora sp. K51G. Marine Drugs, 12, 5197–5208. https://doi.org/10.3390/md12105197
Kyeremeh, K., Acquah, K. S., Sazak, A., Houssen, W., Tabudravu, J., Deng, H., & Jaspars, M. (2014). Butremycin, the 3-Hydroxyl Derivative of Ikarugamycin and a Protonated Aromatic Tautomer of 5′-Methylthioinosine from a Ghanaian Micromonospora sp. K310. Marine Drugs, 12, 999–1012. https://doi.org/10.3390/md12020999
Law, J. W. F., Chan, K. G., He, Y. W., Khan, T. M., Ab Mutalib, N. S., Goh, B. H., & Lee, L. H. (2019). Diversity of Streptomyces spp. from mangrove forest of Sarawak (Malaysia) and screening of their antioxidant and cytotoxic activities. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-51622-x
Lee, L., Zainal, N., Azman, A., Eng, S., Goh, B., Yin, W., Mutalib, N. A., & Chan, K. (2014). Diversity and Antimicrobial Activities of Actinobacteria Isolated from Tropical Mangrove Sediments in Malaysia. The Scientific World Journal, 1–14. https://doi.org/10.1155/2014/698178
Lee, L., Zainal, N., Azman, A., Eng, S., Mutalib, N. A., Yin, W., Chan, K., & Lee, L. (2014). Streptomyces pluripotens sp . nov ., a bacteriocin-producing streptomycete that inhibits meticillin-resistant Staphylococcus aureus. International Journal of Systematic and Evolutionary Microbiolgy, 64, 3297–3306. https://doi.org/10.1099/ijs.0.065045-0
Li, F., Hao, X., Lu, Q., Tuo, L., Liu, S., Zheng, H., Sibero, M. T., Shen, C., & Sun, C. (2023). Protaetiibacter mangrovi sp. nov., Isolated from mangrove soil. The Journal of Antibiotics, 76(9), 532–539.
Li, F., Liu, S., Lu, Q., Zheng, H., Osterman, I. A., Lukyanov, D. A., Sergiev, P. V, Dontsova, O. A., Liu, S., Ye, J., Huang, D., & Sun, C. (2019). Studies on Antibacterial Activity and Diversity of Cultivable Actinobacteria Isolated from Mangrove Soil in Futian and Maoweihai of China. Hindawi: Evidence-Based Complementary and Alternative Medicine, 1–11. https://doi.org/10.1155/2019/3476567
Li, F., Lu, Q., Liao, S., Tuo, L., Liu, S., & Yang, Q. (2021). Schumannella soli sp . nov ., a novel actinomycete isolated from mangrove soil by in situ cultivation. Antonie van Leeuwenhoek, 6. https://doi.org/10.1007/s10482-021-01631-6
Li, K., Chen, S., Pang, X., Cai, J., Zhang, X., Liu, Y., Zhu, Y., & Zhou, X. (2022). Natural Products from Mangrove Sediments-derived Microbes: Structural diversity, Bioactivities, Biosynthesis, and Total Synthesis. European Journal of Medicinal Chemistry, 230(February). https://doi.org/https://doi.org/10.1016/j.ejmech.2022.114117
Li, K., Liang, Z., Chen, W., Luo, X., Fang, W., Liao, S., Lin, X., Yang, B., Wang, J., Tang, L., Liu, Y., & Zhou, X. (2019). Iakyricidins A − D, Antiproliferative Piericidin Analogues Bearing a Carbonyl Group or Cyclic Skeleton from Streptomyces iakyrus SCSIO NS104. The Journal of Organic Chemistry, 84, 12626–12631. https://doi.org/10.1021/acs.joc.9b01270
Liu, M., Jia, Y., Xie, Y., Zhang, C., Ma, J., Sun, C., & Ju, J. (2019). Identification of the Actinomycin D Biosynthetic Pathway from Marine-Derived Streptomyces costaricanus SCSIO ZS0073. Marine Drugs, 17(240), 1–13.
Liu, Y., Liu, J., Yan, P., Kachanuban, K., Liu, P., Jia, A., & Zhu, W. (2024). Carbazole anf Quinazolinone Derivatives from a Fluoride-Tolerant Streptomyces Strain OUCMDZ-5511. Journal of Agricultural and Food Chemistry, 72(12), 6424–6431.
Lu, Q., Ye, J., Huang, Y., Liu, D., Liu, L., Dong, K., Jia, S., Huang, D., & Sun, C. (2019). Exploitation of Potentially New Antibiotics from Mangrove Actinobacteria in Maowei Sea by Combination of Multiple Discovery Strategies. Antibiotics, 8(236), 1–18.
MacLean, R. C., & Millan, A. S. (2019). The evolution of antibiotic resistance. Science, 365(6458), 1082–1083. https://doi.org/10.1126/science.aax3879
Mahanum, M. (2021). Tinjauan Kepustakaan. ALACRITY : Journal of Education, 1(2), 1–12. https://doi.org/10.52121/alacrity.v1i2.20
Maimunah, S., Hanafi, I., Subhan, Anhar, A., & Samek, J. H. (2021). An assessment of tree biodiversity and carbon stocks in mangrove forests, Langsa City, Aceh, Indonesia. IOP Conference Series: Earth and Environmental Science, 886(1). https://doi.org/10.1088/1755-1315/886/1/012085
Mangamuri, U. K., Vijayalakshmi, M., Poda, S., Manavathi, B., Bujangarao, C., & Venkateswarlu, Y. (2015). Bioactive Metabolites Produced by Pseudonocardia endophytica VUK-10 from Mangrove Sediments: Isolation, Chemical Structure Determination and Bioactivity. Journal Microbiology Biotechnology, 25(5), 629–636.
Manikkan, R., Murthy, S., Palaniappan, S., Kaari, M., Sahu, A. K., Said, M., Ganesan, V., & Kannan. (2023). Antibacterial and Anti-HIV Metabolites from Marine Streptomyces albus MAB56 Isolated from Andaman and Nicobar Islands, India. Applied Biochemistry and Biotechnology, 195(12), 7738–7754.
Marfil-santana, M. D., Ru, A., Vidal-torres, M., Ang, N., Figueroa, M., & Prieto-dav, A. (2021). A Meta-Omics Analysis Unveils the Shift in Microbial Community Structures and Metabolomics Profiles in Mangrove Sediments Treated with a Selective Actinobacterial Isolation Procedure. Molecules, 26, 1–24.
Medica, F., Vol, I., Streptomyces, A., & Soil, M. (2020). Folia Medica Indonesiana Vol. 59 No. 3 Retnowati et al.: Antibiotic-Producing Streptomyces sp. from Mangrove Soil. 59(3), 238–245.
Meng, L., Zhang, P., Li, X., & Wang, B. (2015). Penicibrocazines A–E, Five New Sulfide Diketopiperazines from the Marine-Derived Endophytic Fungus Penicillium brocae. Marine Drugs, 12, 276–287. https://doi.org/10.3390/md13010276
Naligama, K. N., Weerasinghe, K. E., & Halmillawewa, A. P. (2022). Characterization of Bioactive Actinomycetes Isolated from Kadolkele Mangrove Sediments , Sri Lanka. Polish Journal of Microbiology, 71(2), 191–204. https://doi.org/https://doi.org/10.33073/pjm-2022-017
Peninsula, L., Lu, Q., Huang, Y., Liu, S., Wu, G., Yang, Q., & Liu, L. (2021). Metabolomics Tools Assisting Classic Screening Methods in Discovering New Antibiotics from Mangrove Actinomycetia in. Marine Drugs, 19(688), 1–30.
Purwanto, R. H., Mulyana, B., Sari, P. I., Hidayatullah, M. F., Marpaung, A. A., Putra, I. S. R., & Putra, A. D. (2021). The environmental services of pangarengan mangrove forest in cirebon, indonesia: Conserving biodiversity and storing carbon. Biodiversitas, 22(12), 5609–5616. https://doi.org/10.13057/biodiv/d221246
Quach, N. T., Hanh, T. H. I., Vu, N., Bui, T. H. I. L., & Pham, A. N. H. T. (2022). Genome-Guided Investigation Provides New Insights into Secondary Metabolites of Streptomyces parvulus SX6 from Aegiceras corniculatum. Polish Journal of Microbiology, 71(3), 381–394.
Qureshi, K. A., Bholay, A. D., Rai, P. K., & Mohammed, H. A. (2021). Isolation, characterization, anti ‑ MRSA evaluation , and in ‑ silico multi ‑ target anti ‑ microbial validations of actinomycin and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Scientific Reports, 11, 1–21. https://doi.org/10.1038/s41598-021-93285-7
Rahmandhana, A. D., Kamal, M., & Wicaksono, P. (2022). Spectral Reflectance-Based Mangrove Species Mapping from WorldView-2 Imagery of Karimunjawa and Kemujan Island, Central Java Province, Indonesia. Remote Sensing, 14(1). https://doi.org/10.3390/rs14010183
Sahoo, K., & Dhal, N. K. (2009). Potential microbial diversity in mangrove ecosystems : A review. Indian Journal of Marine Science, 38(June), 249–256.
Sangkanu, S., Rukachaisirikul, V., Suriyachadkun, C., & Phongpaichit, S. (2017). Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microbial Pathogenesis, 112(October), 303–312. https://doi.org/10.1016/j.micpath.2017.10.010
Sarveswari, H. B., Kalimuthu, S., & Shanmugam, K. (2020). Exploration of Anti-infectives From Mangrove-Derived Micromonospora sp . RMA46 to Combat Vibrio cholerae Pathogenesis. Frontiers in Microbiology, 11(July), 1–14. https://doi.org/10.3389/fmicb.2020.01393
Sea, M., Streptomyces, M., Guo, H., & Sun, C. (2023). Isolation , Structure Elucidation , and First Total Synthesis of Quinomycins K and L , Two New Octadepsipeptides from the. Marine Drugs, 21(143), 1–19.
Sengupta, S., Pramanik, A., Ghosh, A., & Bhattacharyya, M. (2015). Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiology, 1–16. https://doi.org/10.1186/s12866-015-0495-4
Song, M., Xie, Y., Chen, W., Hu, Y., Zhao, K., Huang, X., Liu, Q., & Wang, J. (2020). Diketopiperazine and enterotoxin analogues from the mangrove derived-soil Streptomyces sp . SCSIO 41400 and their biological evaluation. Natural Product Research, 0(0), 1–8. https://doi.org/10.1080/14786419.2020.1864632
Suganya, T., Karuppiah, D., Vidhyavathi, V. R. M., & Kumar, P. (2021). Antifungal activity and molecular docking of phenol , actinobacterium Kutzneria sp . strain TSII from mangrove sediments. Archives of Microbiology, 0123456789. https://doi.org/10.1007/s00203-021-02397-1
Sun, L., Zhu, H., Zhang, L., Zhu, Y., Ratnasekera, D., Zhang, C., & Zhang, Q. (2023). Aromatic Polyketides from the Mangrove-Derived Streptomyces sp. SCSIO 40069. Journal of Natural Products, 86(4), 979–985.
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., & Pulcini, C. (2017). Discovery , research , and development of new antibiotics : the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Articles, 3099(17), 1–10. https://doi.org/10.1016/S1473-3099(17)30753-3
van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7
Wang, P., Kong, F., Wei, J., Wang, Y., Wang, W., Hong, K., & Zhu, W. (2014). Alkaloids from the Mangrove-Derived Actinomycete Jishengella endophytica 161111. Marine Drugs, 12, 477–490. https://doi.org/10.3390/md12010477
Wang, Z., Yin, J., Bai, M., Yang, J., Jiang, C., Yi, X., Liu, Y., & Gao, C. (2024). New Polyene Macrolide Compounds from Mangrove-Derived Strain Streptomyces hiroshimensis GXIMD 06359: Isolation, Antifungal Activity, and Mechanism against Talaromyces marneffei. Marine Drugs, 22(38), 1–18.
Xia, G., Li, J., Li, H., Long, Y., Lin, S., Lu, Y., He, L., Lin, Y., Liu, L., & She, Z. (2014). Alterporriol-Type Dimers from the Mangrove Endophytic Fungus, Alternaria sp. (SK11), and Their MptpB Inhibitions. Marine Drugs, 12, 2953–2969. https://doi.org/10.3390/md12052953
Xu, D., Ma, M., Liu, Y., Zhou, T., Wang, K., Deng, Z., & Hong, K. (2015). PreQ0 Base, an Unusual Metabolite with Anti-Cancer Activity from Streptomyces qinglanensis 172205. Anti-Cancer Agent in Medicinal Chemistry, 15(3), 285–290.
Xu, D., Tian, E., Kong, F., & Hong, K. (2020). Bioactive Molecules from Mangrove Streptomyces qinglanensis 172205. Marine Drugs, 18(255), 1–11.
Xu, D., Ye, W., Han, Y., Deng, Z., & Hong, K. (2014). Natural Products from Mangrove Actinomycetes. Marine Drugs, 12, 2590–2613. https://doi.org/10.3390/md12052590
Xu, M., Wang, J., Bu, X., Yu, H., Li, P., & Ou, H. (2016). Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin. Nature Publishing Group, June 2015, 1–11. https://doi.org/10.1038/srep18977
Yang, S., Xu, X. L. G., Li, X., & Wang, C. A. B. (2018). Antibacterial anthraquinone derivatives isolated from a mangrove- derived endophytic fungus Aspergillus nidulans by ethanol stress strategy. The Journal of Antibiotics, 778–784. https://doi.org/10.1038/s41429-018-0063-x
Ye, J., Zou, R., Zhou, D., & Deng, X. (2023). Insights into the phylogenetic diversity , biological activities , and biosynthetic potential of mangrove rhizosphere Actinobacteria from Hainan Island. Frontiers in Microbiology, may. https://doi.org/DOI 10.3389/fmicb.2023.1157601 OPEN
Ye, X., Chai, W., Lian, X., & Zhang, Z. (2016). Novel propanamide analogue and antiproliferative diketopiperazines from mangrove Streptomyces sp. Q24. Natural Product Research, 6419(November), 0. https://doi.org/10.1080/14786419.2016.1253079
Zakiyyah, F. N., Winoto, Y., & Rohanda, R. (2022). Pemetaan bibliometrik terhadap perkembangan penelitian arsitektur informasi pada Google Scholar menggunakan VOSviewer. Informatio: Journal of Library and Information Science, 2(1), 43. https://doi.org/10.24198/inf.v2i1.37766
Zhang, Y.-M., Li, H.-Y., Hu, C., Sheng, H.-F., Zhang, Y., Lin, B.-R., & Zhou, G.-X. (2016). Ergosterols from the Culture Broth of Marine Streptomyces anandii H41-59. Marine Drugs, 14(84), 1–11. https://doi.org/10.3390/md14050084
Zhao, M., Yang, Z., Li, X., Liu, Y., Zhang, Y., Zhang, M., Li, Y., Wang, X., Deng, Z., Hong, K., & Zhu, D. (2024). Development of Integrated Vectors with Strong Constitutive Promoters for High-Yield Antibiotic Production in Mangrove-Derived Streptomyces. Marine Drugs, 22(94), 1–11.
Zhou, S., Song, L., Masschelein, J., Sumang, F. A. M., Papa, I. A., Zulaybar, O., Custodio, A. B., Zabala, D., Alcantara, E. P., Santos, E. L. C. D. L., & Challis, G. L. (2019). Pentamycin Biosynthesis in Philippine Streptomyces sp. S816: Cytochrome P450-Catalyzed Installation of the C ‑ 14 Hydroxyl Group. ACS Chemical Biology, 14, 1305–1309. https://doi.org/10.1021/acschembio.9b00270
Zwar, I. P., Trotta, C. do V, Ziotta, A. B., Lima Neto, M., Araujo, W. L., de Melo, I. S., Ottoni, C., & de Souza, A. O. (2023). Biosynthesis of silver nanoparticles using actinomycetes, phytotoxicity in rice seeds, and potential application in the biocontrol of phytopathogens. Journal of Basic Microbiology, 63(1), 64–74.
License
Copyright (c) 2024 Rubiyatna Sakaroni, Nora Listantia, Dyah Puspitasari Ningthias
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.