Characterization of Lignocellulolytic Bacteria from Gut of Termite (Isoptera: Rhinotermitidae and Termitidae)

Putri Dwi Mulyani, Muhammad Rizky Ulil Albab, Yekti Asih Purwestri


A total of 10 bacterial isolates have been isolated from the gut of termites (Isoptera: Rhinotermitidae and Termitidae) and are known to have the ability to produce lignocellulolytic enzymes consisting of cellulase, laccase, and lignin peroxidase. The enzymatic ability allows these bacteria to be used as a source of new enzymes in the industrial world. However, further research on the character of bacteria to support identification has not been carried out. This study aims to characterize lignocellulolytic bacteria in the gut of termites morphologically and biochemically. Morphological observations were carried out including colony shape, colony edge, colony color, growth type, bacterial cell shape, and gram staining. Meanwhile, the biochemical characterization carried out included glucose fermentation test, indole formation, starch hydrolysis, catalase test, and nitrate reduction. The results showed that ten isolates of lignocellulolytic bacteria from the gut of termites (Isoptera: Rhinotermitidae and Termitidae) grew facultatively anaerobic, had almost similar morphological characters, with colony shapes including irregular and filamentous, colony edges in the form of lobate, undulate, and filamentous, and coloration. Colonies are white to yellowish white. The result of gram staining showed that most of the bacteria were gram positive bacteria with coccus and bacillus shaped bacterial cells. Biochemical analysis showed that these bacteria have the ability to ferment glucose, hydrolyze starch, reduce hydrogen peroxide (H₂O₂ 30%) and reduce nitrate.



Lignocellulolytic bacteria; termite gut; morphology; biochemical characterization

Full Text:



Auer, L., Lazuka A., Sillam-Dussès D.., Miambi E, O’Donohue M., & Hernandez-Raquet G. (2017). Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors. Front. Microbiol. 8:2623. DOI: 10.3389/fmicb.2017.02623

Begum, K., Mannan, S.J., Rezwan, R., Mahinur, M., Rahman, M.M., Rahman, M.S., & Kamlal, A. N.E. (2017). Isolation and Characterization of Bacteria with Biochemical and Pharmacological Importance from Soil Samples of Dhaka City. Dhaka Univ. J. Pharm. Sci. 16(1): 130.

Brauman, A., Majeed M.Z., Buatois B., Robert A., Pablo A-L, & Miambi E., (2015). Nitrous Oxide (N2O) Emissions by Termites: Does the Feeding Guild Matter. PloS ONE. 10(12):0144-340. DOI: 10.1371/journal.pone.0144340

Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12(3), 168–180. DOI: 10.1038/nrmicro3182

Devaraj, V. & Kasti, S.S. (2019). Isolation and Molecular Characterization of Termite Gut Microflora. Int. J. Sci. Res. in Biological Sciencesl. 6(3): 41-49 DOI: DOI:10.26438/ijsrbs/v6i3.4149

Ferbiyanto, A., Rusmana I., & Raffiudin, R. (2015). Characterization and Identification of Cellulolytic Bacteria from gut of Worker Macrotermes gilvus. HAYATI Journal of Biosciences. 22 (2015) 197-200. DOI:10.1016/j.hjb.2015.07.001

Hussain, T., Roohi, A., Munir, S., Ahmad, I., Khan, J., hermann, V.E., Kim, K.Y., & Anees, M. (2013). Biochemical characterization and identification of bacterial strains isolated from drinking water sources of Kohat, Pakistan. African Journal of Microbiology Research. 7(16): 1581-1582

Lay, B.W. (1994). Analisis Mikroba di Laboratorium. Rajawali Press. Jakarta

Lazuka, A., Auer L., O’Donohue M., & Hernandez‑Raquet, G. (2018). Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Biotechnol Biofuels, 11:284 DOI: 10.1186/s13068-018-1282-x

Liang, L., Song, X., Kong, J., Shen, C., Huang, T., & Hu, Z. (2014). Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1. Biodegradation 25, 825–833. DOI: 10.1007/s10532-014-9702-5

Lima, Thâmarah de Albuquerque, Pontual, E.V., Dornelles, L.P., Amorim, P.K., Sá, K.A., Coelho, L.C.B.B., Napoleão, T.H., & Paiva, P.M.G. (2014). Digestive enzymes from workers and soldiers of termite Nasutitermes corniger. Comparative Biochemistry and Physiology, Part B. 176:1-8. DOI: 10.1016/j.cbpb.2014.07.001

Mannan, S.J., Rezwan, R., Rahman, M.S., & Begum, K. (2017). Isolation and Biochemical Characterization of Lactobacillus species from Yogurt and Cheese samples in Dhaka Metropolitan Area. Bangladesh Pharmaceutical Journal. 20(1): 28

Masai, E., Ichimura A., Sato Y., Miyauchi K., Katayama Y., & Fukuda, M. (2003). Roles of the enantioselective glutathione S-transferases in cleavage of β-aryl ether. J Bacteriol 185(6):1768–1775. DOI: 10.1128/JB.185.6.1768-1775.2003

Molina-Guijarro, J.M., Pérez-Torres J., Muñoz-Dorado J., Guillén-Carretero F., Moya L.R., Cutuli M.H., & Fernández M.E.A. (2009). Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol 12:13–21. DOI: 10.2436/20.1501.01.77

Mulyani, P.D. (2021). Isolasi dan Karakterisasi Lignoselulase Bakteri Saluran Pencernaan Rayap (Isoptera: Rhinotermitidae dan Termitidae) (Tesis). Universitas Gadjah Mada. Yogyakarta.

Muwawa, E.M., Budambula N.L.M., Osiemo Z.L., Boga H.I., & Makonde H.M. (2016). Isolation and characterization of some gut microbial symbionts from fungus-cultivating termites (Macrotermes and Odontotermes spp.). African Journal of Microbiology Research. 10 (26): 994-1004. DOI: 10.5897/AJMR2016.8060

Nasehi, M., Torbatinejad N.M., Zerehdaran S., & Safaei, A.R. (2014). Effect of (Pleurotus florida) Fungi on chemical composition and rumen degradability of wheat and barley straw. Iranian j appl anim sci 4(2):257– 261

Pukhrambam, N. (2019). Comparison of original gram stain and its modification in the gingival plaque samples. J Bacteriol Mycol Open Access. 7(1):1‒3. DOI: 10.15406/jbmoa.2019.07.00231

Suryono, P., Finna, P., Wahyu, P.N., & Aulia, A. (2019). Isolation and Identification of Bacteria and Actinomycetes Isolated from Wilting Banana Plants (Musa Sp.). IOP Conference Series: Materials Science and Engineering. 532(2019): 3. DOI:10.1088/1757-899X/532/1/012028

Taylor, B.F. (1983). Aerobic and anaerobic catabolism of vanillic acid and some other methoxy-aromatic compounds by Pseudomonas sp. strain PN-1. Appl. Environ. Microbiol. 46, 1286–1292. DOI: 10.1128/aem.46.6.1286-1292.1983

Wenzel M., Schonig M., Berchtold M., Kampfer P., & Konig H. (2002). Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of termite Zootermopsis angusticollis. J App Microbiol 92:32-40. DOI: 10.1046/j.1365-2672.2002.01502.x

Sakolvaree, J., & Deevong, P., (2016). Isolation and Characterization of cellulase producingbacteria from the gut of a Higher Termite, Termes propinquus. The 5th Burapha University International Conference “Harmonization of Knowledge towards the Betterment of Society”193- 203.

Stieglmeier, M., Wirth R., Kminek G., & Moissl-Eichinger C. (2009). Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms. Applied and Environmental Microbiology, 75(11). 3484–3491. DOI:10.1128/AEM.02565-08

Zhou, J., Duan, J., Gao, M., Wang, Y., Wang, X., & Zhao, K. (2018). Diversity, Roles, and Biotechnological Applications of Symbiotic Microorganisms in the Gut of Termite. Current Microbiology. 76:755–761 DOI: 10.1007/s00284-018-1502-4


  • There are currently no refbacks.