Optimization of heat shock temperature and time on the transformation of pRGEB32 into Escherichia coli DH5ñ
Authors
Rosy Feraningsih Patigu , Putri Wijayanti , Alfino Sebastian , Yekti Asih PurwestriDOI:
10.29303/jbt.v21i3.2811Published:
2021-09-13Issue:
Vol. 21 No. 3 (2021): September - DesemberKeywords:
Heat shock, pRGEB32, Escherichia coli, Transformation.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Genome editing technique is one of the methods for studying the expression of gene, eliminating unfavorable traits or phenotypes and generating the new characters of species. The pRGEB32 plasmid is one of the vectors that used in genome editing with carrying the Cas9 gene, restriction site of sgRNA (single guide RNA) and specific promoters that can be expressed in plants. The first step in the genome editing process is inserting pRGEB32 into Escherichia coli for propagation. The large size of the plasmid molecule becomes a challenge to determine the right method in the transformation process. This study aims to determine the temperature and time of heat shock transformation of plasmid pRGEB32 into E. coli. The transformation of pRGEB32 into plasmids was carried out with variations in temperature and time, 42ââÆ (30 seconds and 60 seconds) and 55ââÆ (30 seconds and 60 seconds). The results showed that a heat shock temperature of 55ââÆ with a time of 60 seconds was the best temperature for the transformation of pRGEB32 into E. coli. This optimization of heat shock condition will increase the transformation efficiency, which is in the range of 3322-10.989 cfu/õg.
ÃÂ
References
Asif, A., Mohsin, H., Tanvir, R. & Rehman, Y. (2017). Revisiting the Mechanisms Involved in Calcium Chloride Induced Bacterial Transformation. Frontiers in Microbiology. 8, 1-5. https://doi.org/10.3389/fmicb.2017.02169.
Berges, T. & Barreau, C. (1989). Heat Shock at an Elevated Temperatures Improves Transformation Efficiency of Protoplast from Podospora anserina. Journal of General Microbiology. 135(1), 601-604.
https://doi.org/10.1099/00221287-135-3-601.
Chan, W., Verma, C. S., Lane, D. P. & Gan, S. K. (2013). A Comparison and Optimization of Methods and Factors Affecting the Transformation of Escherichia coli. Bioscience Report. 33, 931-943. Doi: 10.1042/BSR20130098.
Curtiss, R., Inoue, M., Pereira, D., Hsu, J. C., Alexander, L., & Rock, L. (1977). Construction and use of safer bacterial host strains for recombinant DNA research in Molecular Cloning of Recombinant DNA, eds W. A. Scott and R. Werner. Academic Press Inch. New York. 99ââ¬â114. ISBN 0-12-634250-4.
Das, S. & Dash, H. R. (2015). Microbial Biotechnology ââ¬â A laboratory Manual for Bacterial System. Springer. New Delhi. Doi: 10.1007/978-81-322-2095-4.
Fauzia, A. N. (2017). Overekspresi Gen OsRKD4 Pada Padi Hitam (Oryza sativa L. ââ¬ËCempo Irengââ¬â¢) Untuk Induksi Embriogeneis Somatik. Unpublished Thesis in partial fulfilment of the requirements for the degree of Magister of Science. Universitas Gadjah Mada. Yogyakarta.
Greenwood, N. N. & Earnshaw, A. (1997). Chemistry of the Elements: Lithium, Sodium, Potassium, Rubidium, Caesium and Francium. Chemistry of Elements (Second Edition). Butterworth-Heinemann. US. ISBN: 978-0-7506-3365-9, pp: 68-106.
Hanahan, D. (1983). Studies on Transformation of Escherichia coli with Plasmids. Journal of Molecular Biology. 166(1), 557-580. doi: 10.1016/s0022-2836(83)80284-8.
Inoue H., Nojima, H. & Okayama H. (1990). High Efficiency Transformation of Escherichia coli with Plasmids. Gene. 96, 23-28. Doi: 10.1016/0378-1119(90)90336-P.
Johnston, C., Martin, B., Fichant, G, Polard, P. & Claverys, J. (2014). Bacterial transformation: distribution, shared mechanisms and divergent control. Nature Reviews Microbiology. 12(3), 181ââ¬â196. https://doi.org/10.1038/nrmicro3199.
Li, K. & Charng, Y. (2012). The use of hygromycin phosphotransferase gene (hpt) with an artificial intron to obtain marker-off transgenic plants. African Journal of Biotechnology. 11(6), 1330-1336. Doi: 10.5897/AJB11.2198.
Lim, G., Lum, D., Ng, B. & Sam, C. (2015). Differential Transformation Efficiencies Observed for pUC19 and pBR322 in E. coli May Be Related to Calcium Chloride Concentration. Journal of Experimental Microbiology and Immunology (JEMI). 1-6. https://jemi.microbiology.ubc.ca/sites/default/files/Lim%20et%20al.pdf
Liu, J., Chang, W., Pan, L., Liu, X., Su, L., Zhang, W., Li, Q. & Zheng Y. (2018). An Improved Method of Preparing High Efficiency Transformation Escherichia coli with Both Plasmids and Larger DNA Fragments. Indian Journal Microbial. 58(4), 448-456. doi: 10.1007/s12088-018-0743-z.
Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltomire, D. & Darnell, J. (2000). Molecular Cell Biology, 4 th Edition. W. H. Freeman and Company. New York. https://www.ncbi.nlm.nih.gov/books/NBK21475/.
Lu, Y., Xu, W., Kang, A., Luo, Y., Guo, F., Yang, R., Zhang, J. & Huang, K. (2007). Prokaryotic Expression and Allergenicity Assessment of Hygromycin B Phosphotransferase Protein Derived from Genetically Modified Plants. Journal of Food Science. 72(7), 228-232. doi: 10.1111/j.1750-3841.2007.00437.x.
Matlock, B. (2015). Assessment of Nucleic Acid Purity. Technical Note 52646. Thermo Fisher Scientific, USA. https://assets.thermofisher.com/TFS-Assets/CAD/Product-Bulletins/TN52646-E-0215M-NucleicAcid.pdf.
Ohse, M., Takahashi, K., Kadowaki, Y. & Kusaoke, H. (1995) Effects of Plasmid DNA Sizes and Several Other Factors on Transformation of Bacillus subtilis ISW1214 with Plasmid DNA by Electroporation. Bioscience, Biotechnology and Biochemistry. 59(8), 1433-1437. DOI: 10.1271/bbb.59.1433
Panja, S., Aich, P., Jana, B. & Basu, T. (2008). Plasmid DNA Binds to the Core Oligosaccharide Domain of LPS Molecules of E. coli Cell Surface in the CaCl2-Mediated Transformation Process. Biomacromolecules. 9(9), 2501ââ¬â2509. doi: 10.1021/bm8005215.
Panja, S., Aich, P., Jana, B. & Basu, T. (2009). How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli?. Molecular Membrane Biology. 25(5), 411-422. doi: 10.1080/09687680802187765.
Rahimzadeh, M., Sadeghizadeh, M., Najafi, F., Arab, S. S. & Mobasheri, H. (2016). Impact of heat shock step on bacterial transformation efficiency. Molecular Biology Research Communications. 5(4), 257-261. https://pubmed.ncbi.nlm.nih.gov/28261629/.
Roychoudhury, A., Basu, S., & Sengupta, D. N. (2009). Analysis of comparative efficiencies of different transformation methods of E. coli using two common plasmid vectors. Indian Journal of Biochemistry & Biophysics. 46, 395-400. https://www.researchgate.net/publication/40758372_Analysis_of_comparative_efficiencies_of_different_transformation_methods_of_E_coli_using_two_common_plasmid_vectors.
Sambrook, J and Russel, D. W. (2001). Molecular Cloning, Third Edition. Cold Spring Harbour Laboratory Press. New York. ISBN-13: 978-0879695774.
Simanjuntak, J. G. (2021). Transformation of Rice Calli With CRISPR-Cas9 Constructs To Edit The Yield-Related Genes. Published An undergraduate thesis in partial fulfilment of the requirements for the degree of Bachelor of Science. IPB University. Bogor.
Sing, M., Yadav, A., Ma, X. & Amoah, E. (2010). Plasmid DNA transformation in Escherichia Coli: effect of heat shock temperature, duration, and cold incubation of CaCl2 treated cells. International Journal of Biotechnology and Biochemistry. 6(4), 561-568. https://www.researchgate.net/publication/216199837_Plasmid_DNA_transformation_in_Escherichia_Coli_effect_of_heat_shock_temperature_duration_and_cold_incubation_of_CaCl2_treated_cells.
Tjahjoleksono, A. (2021). Teknologi DNA Rekombinan. Institut Pertanian Bogor. http://web.ipb.ac.id/~tpb/files/materi/genetika/dnarekombinan/textdnarekombinanpdf.pdf.
Walker, John M. (1984). Nucleic Acids Volume 2: Bacterial Transformation (Kushner Method). Humana Press. New Jersey. ISBN 978-1-59259-489-4. doi:10.1385/0-89603-064-4:241
Willey, J. M., and Woolverton, C. J. (2008). Prescott Harley, and Kleinââ¬â¢s Microbiology 7 ed. The McGraw-Hill Companies. Inc. Newyork. USA. ISBN-978-0-07-337526-7.
Xie K., Minkenberg, B. &Yang, Y. (2015). Boosting CRISPR/Cas9 Multiplex Editing Capability with Endogenous tRNA-Processing System. PNAS. 12(11), 3570-3575. https://doi.org/10.1073/pnas.1420294112.
Yun, L. P., John, C., Chih-Yuan, H. & Hoon, K. Y. (2012). Agarose Gel Electrophoresis for The Separation of DNA Fragments. Journal of Visualized Experiments. 62, 172-173. DOI:10.3791/3923.
Yusuf, B., Nur, A. M., Yunitasari, N. F., Widiastuti, T. A., & Puspitasari, E. (2014). Stability of gag-ca gene of Jembrana Virus in pCDNA-ca Recombinant Plasmid Vector in Escherichia coli DH5ñ Which Has Been Stored fo Eight Years. Jurnal Sain Veteriner. 32(2), 177-184. https://doi.org/10.22146/jsv.6551.
Zauqiah, A. D., Tedja, I. & Susilowati, D. N. (2006). Karakterisasi Lipopolisakarida Bradyrhizobium japonicum KDR 15 Toleran Logam Berat. HAYATI Journal of Biosciences. 13(3), 113ââ¬â118. https://doi.org/10.1016/S1978-3019(16)30303-5.
License
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.