Association of Inducible Nitric Oxide Synthase (iNOS) Gene Diversity with Immunity Characteristics in Kampung Chicken
Authors
Muhammad Muhsinin , Rahma Jan , Maskur Maskur , Tapaul Rozi , Lalu Muhammad Kasip , Muhammad Salman Al FariziDOI:
10.29303/jbt.v25i1.8296Published:
2025-01-06Issue:
Vol. 25 No. 1 (2025): Januari - MaretKeywords:
Disease Resistance; Kampung Chickens; Nitric Oxide; Selective BreedingArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
The immune system of Kampung chickens is vital for maintaining health and productivity, especially in combating bacterial infections. Among the genetic components involved, the inducible nitric oxide synthase (iNOS) gene is crucial for producing nitric oxide (NO), a molecule with strong antimicrobial properties. This study investigated the association between iNOS (AluI│g.15056T>C) gene polymorphism and immune traits in Kampung chickens to enhance disease resistance. Blood samples from 100 Kampung chickens were genotyped using PCR-RFLP, and immune parameters such as leukocyte count, macrophage activity, and bacterial resistance were evaluated. Statistical analysis revealed significant differences among TT, TC, and CC genotypes. The CC genotype exhibited superior performance, including the highest macrophage activity (91.74±1.92%), activated macrophage capacity (2279.49), and bacterial death rate (60.81±3.54%). These findings suggest that the CC genotype enhances NO production, strengthening the immune response to bacterial pathogens like Staphylococcus aureus and Salmonella Pullorum. Additionally, the polymorphism contributes to improved genetic diversity and immune efficiency in Kampung chickens. The study highlights the potential of incorporating the iNOS CC genotype in selective breeding programs to produce chickens with enhanced resilience. Future research should focus on interacting environmental factors with iNOS expression to optimize its application in chicken production.
References
Adams, J. R. G., Mehat, J., La Ragione, R., & Behboudi, S. (2023). Preventing bacterial disease in poultry in the post-antibiotic era: a case for innate immunity modulation as an alternative to antibiotic use. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1205869
Alkie, T. N., Yitbarek, A., Hodgins, D. C., Kulkarni, R. R., Taha-Abdelaziz, K., & Sharif, S. (2019). Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathology, 48(4), 288–310. https://doi.org/10.1080/ 03079457.2019.1607966
Alotiby, A. (2024). Immunology of Stress: A Review Article. Journal of Clinical Medicine, 13(21), 6394. https://doi.org/ 10.3390/jcm13216394
Andrés, C., De La Lastra, J. P., Juan, C., Plou, F., & Pérez-Lebeña, E. (2022). The role of reactive species on innate immunity. Vaccines, 10(10), 1735. https://doi.org/ 10.3390/vaccines10101735
Asfor, A. S., Nazki, S., Reddy, V. R., Campbell, E., Dulwich, K. L., Giotis, E. S., Skinner, M. A., & Broadbent, A. J. (2021). Transcriptomic Analysis of Inbred Chicken Lines Reveals Infectious Bursal Disease Severity Is Associated with Greater Bursal Inflammation In Vivo and More Rapid Induction of Pro-Inflammatory Responses in Primary Bursal Cells Stimulated Ex Vivo. Viruses, 13(5), 933. https://doi.org/ 10.3390/v13050933
Bath, P. M., Coleman, C. M., Gordon, A. L., Lim, W. S., & Webb, A. J. (2021). Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Research, 10, 536. https://doi.org/10.12688/f1000research.51270.2
Bhoyar, L., Mehar, P., & Chavali, K. (2024). An overview of DNA degradation and its implications in forensic caseworks. Egyptian Journal of Forensic Sciences, 14(1). https://doi.org/10.1186/s41935-024-00389-y
Cordeiro, M. C. C., Tomé, F. D., Arruda, F. S., Da Fonseca, S. G., Nagib, P. R. A., & Celes, M. R. N. (2023). Curcumin as a Stabilizer of Macrophage Polarization during Plasmodium Infection. Pharmaceutics, 15(10), 2505. https://doi.org/10.3390/pharmaceutics15102505
Ehrlich, M. A., Wagner, D. N., Oleksiak, M. F., & Crawford, D. L. (2020). Polygenic Selection within a Single Generation Leads to Subtle Divergence among Ecological Niches. Genome Biology and Evolution, 13(2). https://doi.org/ 10.1093/gbe/evaa257
Evseev, D., & Magor, K. E. (2019). Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Veterinary Sciences, 6(1), 5. https://doi.org/10.3390/vetsci6010005
Gajic, I., Kabic, J., Kekic, D., Jovicevic, M., Milenkovic, M., Culafic, D. M., Trudic, A., Ranin, L., & Opavski, N. (2022). Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics, 11(4), 427. https://doi.org/10.3390/antibiotics11040427
Goel, A., Ncho, C. M., & Choi, Y. (2021). Regulation of gene expression in chickens by heat stress. Journal of Animal Science and Biotechnology/Journal of Animal Science and Biotechnology, 12(1). https://doi.org/10.1186/s40104-020-00523-5
Herbert, J. A., & Panagiotou, S. (2022). Immune Response to Viruses. In Elsevier eBooks (pp. 429–444). https://doi.org/ 10.1016/b978-0-12-818731-9.00235-4
Huang, Y., Chen, Y., Xie, H., Feng, Y., Chen, S., & Bao, B. (2024). Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish. Biology, 13(6), 372. https://doi.org/ 10.3390/ biology13060372
Kulkarni, R. R., Gaghan, C., & Mohammed, J. (2022). Avian Macrophage Responses to Virulent and Avirulent Clostridium perfringens. Pathogens, 11(1), 100. https://doi.org/10.3390/pathogens11010100
Maharani, D., Hariyono, D. N., Putra, D. D., Lee, J., & Sidadolog, J. H. (2019). Phenotypic characterization of local female duck populations in Indonesia. Journal of Asia-Pacific Biodiversity, 12(4), 508–514. https://doi.org/10.1016/j.japb.2019. 07.004
Martins, R. R., Silva, L. J. G., Pereira, A. M. P. T., Esteves, A., Duarte, S. C., & Pena, A. (2022). Coccidiostats and Poultry: A Comprehensive Review and Current Legislation. Foods, 11(18), 2738. https://doi.org/10.3390/foods11182738
Mazuryk, O., Gurgul, I., Oszajca, M., Polaczek, J., Kieca, K., Bieszczad-Żak, E., Martyka, T., & Stochel, G. (2024). Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants, 13(10), 1213. https://doi.org/10.3390/antiox 13101213
Meijerink, N., Van Den Biggelaar, R. H. G. A., Van Haarlem, D. A., Stegeman, J. A., Rutten, V. P. M. G., & Jansen, C. A. (2021). A detailed analysis of innate and adaptive immune responsiveness upon infection with Salmonella enterica serotype Enteritidis in young broiler chickens. Veterinary Research, 52(1). https://doi.org/10.1186/s13567-021-00978-y
Muhsinin, M., Ulupi, N., Gunawan, A., Wibawan, I. W. T., & Sumantri, C. (2018). Influence of iNOS to Salmonella Pullorum Disease Resistance in Sentul Chicken. Veterinaria 67 (1), 17-21. https://veterinaria.unsa.ba/journal/index.php/vfs/article/view/276
Putra, M. D., Rahyussalim, A. J., Jusman, S. W. A., Iswanti, F. C., & Sadikin, M. (2021). Phagocytosis and the antigen-processing abilities of macrophages derived from monocytes in spinal tuberculosis patients. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 23, 100215. https://doi.org/ 10.1016/j.jctube.2021.100215
Redmond, S. B., Chuammitri, P., Andreasen, C. B., Palić, D., & Lamont, S. J. (2011). Proportion of circulating chicken heterophils and CXCLi2 expression in response to Salmonella enteritidis are affected by genetic line and immune modulating diet. Veterinary Immunology and Immunopathology, 140(3–4), 323–328. https://doi.org/10.1016/j.vetimm. 2011.01.006
Song, B., Yan, S., Li, P., Li, G., Gao, M., Yan, L., Lv, Z., & Guo, Y. (2022). Comparison and Correlation Analysis of Immune Function and Gut Microbiota of Broiler Chickens Raised in Double-Layer Cages and Litter Floor Pens. Microbiology Spectrum, 10(4). https://doi.org/10.1128/spectrum.00045-22
Souillard, R., Allain, V., Dufay-Lefort, A. C., Rousset, N., Amalraj, A., Spaans, A., Zbikowski, A., Piccirillo, A., Sevilla-Navarro, S., Kovács, L., & Bouquin, S. L. (2024). Biosecurity implementation on large-scale poultry farms in Europe: A qualitative interview study with farmers. Preventive Veterinary Medicine, 224, 106119. https://doi.org/ 10.1016/j.prevetmed.2024.106119
Stefanetti, V., Mancinelli, A. C., Pascucci, L., Menchetti, L., Castellini, C., Mugnai, C., Fiorilla, E., Miniscalco, B., Chiattelli, D., Franciosini, M. P., & Proietti, P. C. (2023). Effect of rearing systems on immune status, stress parameters, intestinal morphology, and mortality in conventional and local chicken breeds. Poultry Science, 102(12), 103110. https://doi.org/10.1016/j.psj.2023.103110
Sun, X., Wang, Z., Shao, C., Yu, J., Liu, H., Chen, H., Li, L., Wang, X., Ren, Y., Huang, X., Zhang, R., & Li, G. (2021). Analysis of chicken macrophage functions and gene expressions following infectious bronchitis virus M41 infection. Veterinary Research, 52(1). https://doi.org/10.1186/s13567-021-00896-z
Tachibana, T., Takahashi, M., Khan, S., Makino, R., & Cline, M. A. (2022). Poly I:C and R848 facilitate nitric oxide production via inducible nitric oxide synthase in chicks. Comparative Biochemistry and Physiology Part a Molecular & Integrative Physiology, 269, 111211. https://doi.org/10.1016/j.cbpa.2022.111211
Verwoolde, M. B., Van Den Biggelaar, R. H., De Vries Reilingh, G., Arts, J. A., Van Baal, J., Lammers, A., & Jansen, C. A. (2020). Innate immune training and metabolic reprogramming in primary monocytes of broiler and laying hens. Developmental & Comparative Immunology, 114, 103811. https://doi.org/10.1016/j.dci. 2020.103811
Wlaźlak, S., Pietrzak, E., Biesek, J., & Dunislawska, A. (2023). Modulation of the immune system of chickens a key factor in maintaining poultry production—a review. Poultry Science, 102(8), 102785. https://doi.org/10.1016/ j.psj.2023.102785
Yamanishi, H., Imai, N., Suehisa, E., Kanakura, Y., & Iwatani, Y. (2007). Determination of leukocyte counts in cerebrospinal fluid with a disposable plastic hemocytometer. Journal of Clinical Laboratory Analysis, 21(5), 282–285. https://doi.org/10.1002/jcla.20184
Zhang, J., Wang, Q., Li, Q., Wang, Z., Zheng, M., Wen, J., & Zhao, G. (2023). Comparative functional analysis of macrophage phagocytosis in Dagu chickens and Wenchang chickens. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1064461
Zmrhal, V., Svoradova, A., Venusova, E., & Slama, P. (2023). The Influence of Heat Stress on Chicken Immune System and Mitigation of Negative Impacts by Baicalin and Baicalein. Animals, 13(16), 2564. https://doi.org/10.3390/ani13162564
License
Copyright (c) 2025 Muhammad Muhsinin, Rahma Jan, Maskur Maskur, Tapaul Rozi, Lalu Muhammad Kasip, Muhammad Salman Al Farizi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.