Identification of Diversity and Genetic Distance of Indonesian Local Chicken Strains Based on Myostatin Gene
Authors
Muhammad Muhsinin , Maskur Maskur , Rahma Jan , Tapaul Rozi , Lalu Muhammad Kasip , Muhammad Salman Al FariziDOI:
10.29303/jbt.v25i1.8297Published:
2025-01-07Issue:
Vol. 25 No. 1 (2025): Januari - MaretKeywords:
Genetic diversity; Genetic distance; Indonesian local chickens; MSTN gene.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Indonesian local chickens are essential genetic resources with significant potential for advancing the national poultry industry due to their high genetic diversity, reflecting adaptation to tropical environments and traditional farming systems. This study analyzed the genetic diversity of Kampung, Sentul, KUB, SenSi, and Broiler chickens based on the MSTN g.4842T>G locus. Blood samples from 150 chickens underwent PCR-RFLP analysis using the BsrI restriction enzyme targeting exon 2 of the MSTN gene. Parameters such as observed heterozygosity (Ho), expected heterozygosity (He), polymorphism information content (PIC), and Hardy-Weinberg equilibrium were assessed. Genetic distances were calculated using PHYLIP, and a dendrogram was constructed with UPGMA. The study identified two alleles (G and T) and three genotypes (GG, GT, TT), with the T allele being dominant, particularly in Broiler chickens (78.3%). Ho was lower than He in all populations, indicating a heterozygosity deficit. PIC values ranged from 0.282 (Broiler) to 0.367 (SenSi), classifying the MSTN locus as moderately polymorphic. Kampung and KUB chickens showed the closest genetic relationship, while Broiler chickens were the most distinct. These findings underscore the potential of local chickens in breeding programs for adaptability and productivity. Further research with additional markers is recommended to enhance sustainable poultry farming.
References
Ariza, A. G., Arbulu, A. A., González, F. J. N., Baena, S. N., Bermejo, J. V. D., & Vallejo, M. E. C. (2021). The Study of Growth and Performance in Local Chicken Breeds and Varieties: A Review of Methods and Scientific Transference. Animals, 11(9), 2492. https://doi.org/ 10.3390/ani11092492
Bhoyar, L., Mehar, P., & Chavali, K. (2024). An overview of DNA degradation and its implications in forensic caseworks. Egyptian Journal of Forensic Sciences, 14(1). https://doi.org/10.1186/s41935-024-00389-y
Bortoluzzi, C., Bosse, M., Derks, M. F. L., Crooijmans, R. P. M. A., Groenen, M. a. M., & Megens, H. (2019). The type of bottleneck matters: Insights into the deleterious variation landscape of small managed populations. Evolutionary Applications, 13(2), 330–341. https://doi.org/10.1111/eva.12872
Chebo, C., Betsha, S., & Melesse, A. (2022). Chicken genetic diversity, improvement strategies and impacts on egg productivity in Ethiopia: a review. World S Poultry Science Journal, 78(3), 803–821. https://doi.org/10.1080/00439339. 2022.2067020
Chu, J., Ma, Y., Song, H., Zhao, Q., Wei, X., Yan, Y., Fan, S., Zhou, B., Li, S., & Mou, C. (2023). The genomic characteristics affect phenotypic diversity from the perspective of genetic improvement of economic traits. iScience, 26(4), 106426. https://doi.org/ 10.1016/j.isci.2023.106426
De La Parra, M. D., Inostroza, K., Alcalde, J. A., Larama, G., & Bravo, S. (2023). Characterization of the genetic diversity, structure, and admixture of 7 Chilean chicken breeds. Poultry Science, 103(2), 103238. https://doi.org/10.1016/j.psj. 2023.103238
Gao, C., Du, W., Tian, K., Wang, K., Wang, C., Sun, G., Kang, X., & Li, W. (2023). Analysis of Conservation Priorities and Runs of Homozygosity Patterns for Chinese Indigenous Chicken Breeds. Animals, 13(4), 599. https://doi.org/10.3390/ani13040599
Grzegorczyk, J., Gurgul, A., Oczkowicz, M., Szmatoła, T., Fornal, A., & Bugno-Poniewierska, M. (2021). Single Nucleotide Polymorphism Discovery and Genetic Differentiation Analysis of Geese Bred in Poland, Using Genotyping-by-Sequencing (GBS). Genes, 12(7), 1074. https://doi.org/10.3390/genes12071074
Gu, Z., Zhang, Y., Shi, P., Zhang, Y., Zhu, D., & Li, H. (2004). Comparison of avian myostatin genes. Animal Genetics, 35(6), 470–472. https://doi.org/10.1111/ j.1365-2052.2004.01194.x
Habimana, R., Okeno, T. O., Ngeno, K., Mboumba, S., Assami, P., Gbotto, A. A., Keambou, C. T., Nishimwe, K., Mahoro, J., & Yao, N. (2020). Genetic diversity and population structure of indigenous chicken in Rwanda using microsatellite markers. PLoS ONE, 15(4), e0225084. https://doi.org/10.1371/journal.pone.0225084
Kim, D., Choi, Y. M., Suh, Y., Shin, S., Lee, J., Hwang, S., & Lee, K. (2020). Research Note: Association of temporal expression of myostatin with hypertrophic muscle growth in different Japanese quail lines. Poultry Science, 99(6), 2926–2930. https://doi.org/ 10.1016/j.psj.2019.12.069
Kpomasse, C. C., Kouame, Y. a. E., N’nanle, O., Houndonougbo, F. M., Tona, K., & Oke, O. E. (2023). The productivity and resilience of the indigenous chickens in the tropical environments: improvement and future perspectives. Journal of Applied Animal Research, 51(1), 456–469. https://doi.org/10.1080/09712119. 2023.2228374
Lee, J., Kim, D., & Lee, K. (2024). Myostatin gene role in regulating traits of poultry species for potential industrial applications. Journal of Animal Science and Biotechnology/Journal of Animal Science and Biotechnology, 15(1). https://doi.org/10.1186/s40104-024-01040-5
Lu, T., Gibril, B. a. A., Xu, J., & Xiong, X. (2024). Unraveling the Genetic Foundations of Broiler Meat Quality: Advancements in Research and Their Impact. Genes, 15(6), 746. https://doi.org/10.3390/genes15060746
Mariandayani, H. N., Darwati, S., Khaerunnisa, I., & Prasasty, V. D. (2023). Growth performance of Indonesian three-breed cross chicken associated with growth hormone and insulin-like growth factor 2 genes. Veterinary World, 2471–2478. https://doi.org/10.14202/vetworld.2023.2471-2478
Mogano, R. R., Mpofu, T. J., Mtileni, B., & Hadebe, K. (2024). South African indigenous chickens’ genetic diversity, and the adoption of ecological niche modelling and landscape genomics as strategic conservation techniques. Poultry Science, 104(1), 104508. https://doi.org/10.1016/j.psj.2024.104508
Nawaz, A. H., Setthaya, P., & Feng, C. (2024). Exploring Evolutionary Adaptations and Genomic Advancements to Improve Heat Tolerance in Chickens. Animals, 14(15), 2215. https://doi.org/10.3390/ ani14152215
Nei, M. (1972). Genetic Distance between Populations. The American Naturalist, 106(949), 283–292. https://doi.org/ 10.1086/282771
Restoux, G., Rognon, X., Vieaud, A., Guemene, D., Petitjean, F., Rouger, R., Brard-Fudulea, S., Lubac-Paye, S., Chiron, G., & Tixier-Boichard, M. (2022). Managing genetic diversity in breeding programs of small populations: the case of French local chicken breeds. Genetics Selection Evolution, 54(1). https://doi.org/10.1186/s12711-022-00746-2
Rexroad, C., Vallet, J., Matukumalli, L. K., Reecy, J., Bickhart, D., Blackburn, H., Boggess, M., Cheng, H., Clutter, A., Cockett, N., Ernst, C., Fulton, J. E., Liu, J., Lunney, J., Neibergs, H., Purcell, C., Smith, T. P. L., Sonstegard, T., Taylor, J., . . . Wells, K. (2019). Genome to Phenome: Improving Animal Health, Production, and Well-Being – A New USDA Blueprint for Animal Genome Research 2018–2027. Frontiers in Genetics, 10. https://doi.org/10.3389/ fgene.2019.00327
Rodgers, B. D., & Ward, C. W. (2021). Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocrine Reviews, 43(2), 329–365. https://doi.org/10.1210/ endrev/bnab030
Shoyombo, A. J., Abdulmojeed, Y., Alabi, O. O., Popoola, M. A., Okon, E. M., & Arije, D. O. (2022). Applications of Myostatin in Poultry and Aquaculture - A Review. The Open Agriculture Journal, 16(1). https://doi.org/10.2174/18743315-v16-e2208010
Sumantri, C., Khaerunnisa, I., & Gunawan, A. (2020). The genetic quality improvement of native and local chickens to increase production and meat quality in order to build the Indonesian chicken industry. IOP Conference Series Earth and Environmental Science, 492(1), 012099. https://doi.org/10.1088/1755-1315/ 492/ 1/012099
Talebi, R., Szmatoła, T., Mészáros, G., & Qanbari, S. (2020). Runs of Homozygosity in Modern Chicken Revealed by Sequence Data. G3 Genes Genomes Genetics, 10(12), 4615–4623. https://doi.org/10.1534/g3.120.401860
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/ molbev/msab120
Wang, M., Zhang, J., Guo, X., Li, M., Meyer, R., Ashari, H., Zheng, Z., Wang, S., Peng, M., Jiang, Y., Thakur, M., Suwannapoom, C., Esmailizadeh, A., Hirimuthugoda, N. Y., Zein, M. S. A., Kusza, S., Kharrati-Koopaee, H., Zeng, L., Wang, Y., . . . Zhang, Y. (2021). Large-scale genomic analysis reveals the genetic cost of chicken domestication. BMC Biology, 19(1). https://doi.org/ 10.1186/s12915-021-01052-x
Wu, S., Chen, Z., Zhou, X., Lu, J., Tian, Y., Jiang, Y., Liu, Q., Wang, Z., Li, H., Qu, L., & Zhang, F. (2024). Analysis of genetic diversity and genetic structure of indigenous chicken populations in Guizhou Province based on genome-wide single nucleotide polymorphism markers. Poultry Science, 103(12), 104383. https://doi.org/10.1016/j.psj. 2024.104383
Xie, X., Shi, L., Zhong, Z., Wang, Z., Pan, D., Hou, G., & Xiao, Q. (2024). Danzhou chicken: a unique genetic resource revealed by genome-wide resequencing data. Poultry Science, 103(8), 103960. https://doi.org/10.1016/j.psj.2024.103960
Xie, X., Wang, Z., Zhong, Z., Pan, D., Hou, G., & Xiao, Q. (2024). Genome-wide scans for selection signatures in indigenous chickens reveal candidate genes associated with local adaptation. Animal, 18(5), 101151. https://doi.org/10.1016/ j.animal.2024.101151
Xu, K., Han, C. X., Zhou, H., Ding, J. M., Xu, Z., Yang, L. Y., He, C., Akinyemi, F., Zheng, Y. M., Qin, C., Luo, H. X., & Meng, H. (2020). Effective MSTN Gene Knockout by AdV-Delivered CRISPR/Cas9 in Postnatal Chick Leg Muscle. International Journal of Molecular Sciences, 21(7), 2584. https://doi.org/10.3390/ijms21072584
Yuan, J., Li, S., Sheng, Z., Zhang, M., Liu, X., Yuan, Z., Yang, N., & Chen, J. (2022). Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens. BMC Genomics, 23(1). https://doi.org/ 10.1186/s12864-021-08280-z
License
Copyright (c) 2025 Muhammad Muhsinin, Maskur Maskur, Rahma Jan, Tapaul Rozi, Lalu Muhammad Kasip, Muhammad Salman Al Farizi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.