Pengaruh Ukuran Partikel, Persen Padatan, dan pH pada Proses Flotasi Terhadap Perolehan Kembali Tembaga

Syamsul Bahtiar, Wafdan Muzakki, Rita Desiasni, Fauzi Widyawati, Syamsul Hidayat

Abstract

Flotasi merupakan proses ekstraksi logam berdasarkan perbedaan tegangan permukaan dari mineral di dalam air dengan cara mengapungkan mineral ke permukaan. Faktor yang mempengaruhi nilai perolehan kembali Tembaga antara lain ditentukan oleh ukuran partikel, jumlah persen padatan dan kondisi larutan. Pada penelitian ini akan dilakukan pengamatan terhadap perolehan kembali mineral tembaga dengan melakukan variasi ukuran partikel, variasi persen padatan pada jumlah 33%, 42% dan 47% dan variasi pH larutan pada kondisi basa yaitu pH 10, 10.3 dan 10.6. Pengecilan ukuran partikel dilakukan dengan proses Grinding sampai mendapatkan ukuran + 212 mikron. Selanjutnya, pH larutan dikontrol dengan penambahan kapur. Analisis perolehan kembali mineral tembaga secara kuantittatif dilakukan dengan karakterisasi AAS. Hasil penelitian menunjukkan bahwa ukuran partikel yang optimum didapat pada pada variasi 3% +212 mikron dengan nilai 95.12%. Sedangkan, jumlah persen padatan 42% memberikan nilai tertinggi yaitu 95.12%. Selanjutnya, diperoleh pH terbaik untuk memperoleh tembaga yang optimum yaitu pada pH 10.6 sebesar 95.12%

Keywords

Flotasi , Ukuran Partikel, Persen Padatan, pH, Perolehan Kembali.

Full Text:

PDF

References

Yasir Arsy, L. M., Widodo, S., & Bakri, H. (2018). Analisis nilai recovery au dan cu terhadap konsumsi lime dengan variasi titik penambahan pada proses flotasi. Jurnal Geomine, 6(1). https://doi.org/10.33536/jg.v6i1.178

Mathe, E., Cruz, C., Lucay, F. A., Gálvez, E. D., & Cisternas, L. A. (2021). Development of a grinding model based on flotation performance. Minerals Engineering, 166, 106890. https://doi.org/10.1016/j.mineng.2021.106890

Jameson, G. J., & Emer, C. (2019). Coarse chalcopyrite recovery in a universal froth flotation machine. Minerals Engineering, 134, 118–133. https://doi.org/10.1016/j.mineng.2019.01.024

Karamah, E. F., Setijo Bismo, & Widyaningrum, D. (2008). Pengaruh waktu flotasi dan konsentrasi logam awal terhadap kinerja proses pengolahan limbah cair yang mengandung logam besi, tembaga, dan nikel dengan flotasi ozon. https://doi.org/10.13140/RG.2.1.1785.1366

Sibanda, V., Khan, R., & Danha, G. (2019). The effect of chemical reagents on flotation performance of a pentlandite ore: An attainable region approach. Powder Technology, 352, 462–469. https://doi.org/10.1016/j.powtec.2019.04.062

Edson Muzenda, Ayo S. Afolabi, Ambali S. Abdulkareem, & Freeman Ntuli. (n.d.). Effect of pH on the Recovery and Grade of Base Metal Sulphides (PGMs) by Flotation. Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II, 2.

Wills, B., Finch, J., & Safari, an O. M. C. (2015). Wills’ Mineral Processing Technology, 8th Edition. https://www.safaribooksonline.com/complete/auth0oauth2/&state=/library/view//9780080970547/?ar

Cole, M. J., Galvin, K. P., & Dickinson, J. E. (2021). Maximizing recovery, grade and throughput in a single stage Reflux Flotation Cell. Minerals Engineering, 163, 106761. https://doi.org/10.1016/j.mineng.2020.106761

Collins Mudenda, Bupe .G.Mwanza, & M Kondwani. (n.d.). Analysis of the Effects of Grind Size on Production of Copper Concentrate: A Case Study of a Mining Company in Zambia. International Journal of Sciences: Basic and Applied Research (IJSBAR), Vol 26 No 1 (2016).

Bascur, O. A., & Soudek, A. (2019). Grinding and Flotation Optimization Using Operational Intelligence. Mining, Metallurgy & Exploration, 36(1), 139–149. https://doi.org/10.1007/s42461-018-0036-4

Badri, R., & Zamankhan, P. (2013). Sulphidic refractory gold ore pre-treatment by selective and bulk flotation methods. Advanced Powder Technology, 24(2), 512–519. https://doi.org/10.1016/j.apt.2012.10.002

Napier-Munn, T., & Wills, B. A. (2005). Wills’ Mineral Processing Technology. In Wills’ Mineral Processing Technology. https://doi.org/10.1016/B978-0-7506-4450-1.X5000-0

Brest, K. K., Henock, M. M., Guellord, N., Kimpiab, M., & Kapiamba, K. F. (2021). Statistical investigation of flotation parameters for copper recovery from sulfide flotation tailings. Results in Engineering, 9, 100207. https://doi.org/10.1016/j.rineng.2021.100207

Oediyani, S., Haryono, D., & Suwandana, R. F. (2019). Optimization of flotation columns to provide added value of local sphalerite ore. IOP Conference Series: Materials Science and Engineering, 673, 012133. https://doi.org/10.1088/1757-899X/673/1/012133

Ma, X., Bruckard, W. J., & Holmes, R. (2009). Effect of collector, pH and ionic strength on the cationic flotation of kaolinite. International Journal of Mineral Processing, 93(1), 54–58. https://doi.org/10.1016/j.minpro.2009.05.007

Filippova, I. V., Filippov, L. O., Duverger, A., & Severov, V. V. (2014). Synergetic effect of a mixture of anionic and nonionic reagents: Ca mineral contrast separation by flotation at neutral pH. Minerals Engineering, 66–68, 135–144. https://doi.org/10.1016/j.mineng.2014.05.009

Yepsen, R., & Gutierrez, L. (2020). Effect of Eh and pH on the flotation of enargite using seawater. Minerals Engineering, 159, 106612. https://doi.org/10.1016/j.mineng.2020.106612

Zanin, M., Lambert, H., & du Plessis, C. A. (2019). Lime use and functionality in sulphide mineral flotation: A review. Minerals Engineering, 143, 105922. https://doi.org/10.1016/j.mineng.2019.105922

Muzenda, E., Afolabi, A.S., Abdulkareem, A.S., Ntuli, F. (2011). Effect of pH on the Recovery and Grade of Base Metal Sulphides (PGMs) by Flotation. Lecture Notes in Engineering and Computer Science, II.

Xiong, K., & Zheng, G. S. (2013). Process Mineralogy and Flotation Kinetic of a Copper Oxide Ore during Sulfuration Flotation. Advanced Materials Research, 634–638, 3460–3465. https://doi.org/10.4028/www.scientific.net/AMR.634-638.3460

Refbacks

  • There are currently no refbacks.