Pengaruh Ukuran Partikel, Persen Padatan, dan pH pada Proses Flotasi Terhadap Perolehan Kembali Tembaga

Authors

Syamsul Bahtiar , Wafdan Muzakki , Rita Desiasni , Fauzi Widyawati , Syamsul Hidayat

DOI:

10.29303/jpm.v16i3.1308

Published:

2021-06-02

Issue:

Vol. 16 No. 3 (2021): Juni 2021

Keywords:

Flotasi, Ukuran Partikel, Persen Padatan, pH, Perolehan Kembali.

Articles

Downloads

How to Cite

Bahtiar, S., Muzakki, W., Desiasni, R., Widyawati, F., & Hidayat, S. (2021). Pengaruh Ukuran Partikel, Persen Padatan, dan pH pada Proses Flotasi Terhadap Perolehan Kembali Tembaga. Jurnal Pijar Mipa, 16(3), 406–410. https://doi.org/10.29303/jpm.v16i3.1308

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Flotasi merupakan proses ekstraksi logam berdasarkan perbedaan tegangan permukaan dari mineral di dalam air dengan cara mengapungkan mineral ke permukaan. Faktor yang mempengaruhi nilai perolehan kembali Tembaga antara lain ditentukan oleh ukuran partikel, jumlah persen padatan dan kondisi larutan. Pada penelitian ini akan dilakukan pengamatan terhadap perolehan kembali mineral tembaga dengan melakukan variasi ukuran partikel, variasi persen padatan pada jumlah 33%, 42% dan 47% dan variasi pH larutan pada kondisi basa yaitu pH 10, 10.3 dan 10.6. Pengecilan ukuran partikel dilakukan dengan proses Grinding sampai mendapatkan ukuran + 212 mikron. Selanjutnya, pH larutan dikontrol dengan penambahan kapur. Analisis perolehan kembali mineral tembaga secara kuantittatif dilakukan dengan karakterisasi AAS. Hasil penelitian menunjukkan bahwa ukuran partikel yang optimum didapat pada pada variasi 3% +212 mikron dengan nilai 95.12%. Sedangkan, jumlah persen padatan 42% memberikan nilai tertinggi yaitu 95.12%. Selanjutnya, diperoleh pH terbaik untuk memperoleh tembaga yang optimum yaitu pada pH 10.6 sebesar 95.12%

References

Yasir Arsy, L. M., Widodo, S., & Bakri, H. (2018). Analisis nilai recovery au dan cu terhadap konsumsi lime dengan variasi titik penambahan pada proses flotasi. Jurnal Geomine, 6(1). https://doi.org/10.33536/jg.v6i1.178

Mathe, E., Cruz, C., Lucay, F. A., Gálvez, E. D., & Cisternas, L. A. (2021). Development of a grinding model based on flotation performance. Minerals Engineering, 166, 106890. https://doi.org/10.1016/j.mineng.2021.106890

Jameson, G. J., & Emer, C. (2019). Coarse chalcopyrite recovery in a universal froth flotation machine. Minerals Engineering, 134, 118ââ¬â133. https://doi.org/10.1016/j.mineng.2019.01.024

Karamah, E. F., Setijo Bismo, & Widyaningrum, D. (2008). Pengaruh waktu flotasi dan konsentrasi logam awal terhadap kinerja proses pengolahan limbah cair yang mengandung logam besi, tembaga, dan nikel dengan flotasi ozon. https://doi.org/10.13140/RG.2.1.1785.1366

Sibanda, V., Khan, R., & Danha, G. (2019). The effect of chemical reagents on flotation performance of a pentlandite ore: An attainable region approach. Powder Technology, 352, 462ââ¬â469. https://doi.org/10.1016/j.powtec.2019.04.062

Edson Muzenda, Ayo S. Afolabi, Ambali S. Abdulkareem, & Freeman Ntuli. (n.d.). Effect of pH on the Recovery and Grade of Base Metal Sulphides (PGMs) by Flotation. Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II, 2.

Wills, B., Finch, J., & Safari, an O. M. C. (2015). Willsââ¬â¢ Mineral Processing Technology, 8th Edition. https://www.safaribooksonline.com/complete/auth0oauth2/&state=/library/view//9780080970547/?ar

Cole, M. J., Galvin, K. P., & Dickinson, J. E. (2021). Maximizing recovery, grade and throughput in a single stage Reflux Flotation Cell. Minerals Engineering, 163, 106761. https://doi.org/10.1016/j.mineng.2020.106761

Collins Mudenda, Bupe .G.Mwanza, & M Kondwani. (n.d.). Analysis of the Effects of Grind Size on Production of Copper Concentrate: A Case Study of a Mining Company in Zambia. International Journal of Sciences: Basic and Applied Research (IJSBAR), Vol 26 No 1 (2016).

Bascur, O. A., & Soudek, A. (2019). Grinding and Flotation Optimization Using Operational Intelligence. Mining, Metallurgy & Exploration, 36(1), 139ââ¬â149. https://doi.org/10.1007/s42461-018-0036-4

Badri, R., & Zamankhan, P. (2013). Sulphidic refractory gold ore pre-treatment by selective and bulk flotation methods. Advanced Powder Technology, 24(2), 512ââ¬â519. https://doi.org/10.1016/j.apt.2012.10.002

Napier-Munn, T., & Wills, B. A. (2005). Willsââ¬â¢ Mineral Processing Technology. In Willsââ¬â¢ Mineral Processing Technology. https://doi.org/10.1016/B978-0-7506-4450-1.X5000-0

Brest, K. K., Henock, M. M., Guellord, N., Kimpiab, M., & Kapiamba, K. F. (2021). Statistical investigation of flotation parameters for copper recovery from sulfide flotation tailings. Results in Engineering, 9, 100207. https://doi.org/10.1016/j.rineng.2021.100207

Oediyani, S., Haryono, D., & Suwandana, R. F. (2019). Optimization of flotation columns to provide added value of local sphalerite ore. IOP Conference Series: Materials Science and Engineering, 673, 012133. https://doi.org/10.1088/1757-899X/673/1/012133

Ma, X., Bruckard, W. J., & Holmes, R. (2009). Effect of collector, pH and ionic strength on the cationic flotation of kaolinite. International Journal of Mineral Processing, 93(1), 54ââ¬â58. https://doi.org/10.1016/j.minpro.2009.05.007

Filippova, I. V., Filippov, L. O., Duverger, A., & Severov, V. V. (2014). Synergetic effect of a mixture of anionic and nonionic reagents: Ca mineral contrast separation by flotation at neutral pH. Minerals Engineering, 66ââ¬â68, 135ââ¬â144. https://doi.org/10.1016/j.mineng.2014.05.009

Yepsen, R., & Gutierrez, L. (2020). Effect of Eh and pH on the flotation of enargite using seawater. Minerals Engineering, 159, 106612. https://doi.org/10.1016/j.mineng.2020.106612

Zanin, M., Lambert, H., & du Plessis, C. A. (2019). Lime use and functionality in sulphide mineral flotation: A review. Minerals Engineering, 143, 105922. https://doi.org/10.1016/j.mineng.2019.105922

Muzenda, E., Afolabi, A.S., Abdulkareem, A.S., Ntuli, F. (2011). Effect of pH on the Recovery and Grade of Base Metal Sulphides (PGMs) by Flotation. Lecture Notes in Engineering and Computer Science, II.

Xiong, K., & Zheng, G. S. (2013). Process Mineralogy and Flotation Kinetic of a Copper Oxide Ore during Sulfuration Flotation. Advanced Materials Research, 634ââ¬â638, 3460ââ¬â3465. https://doi.org/10.4028/www.scientific.net/AMR.634-638.3460

Author Biographies

Syamsul Bahtiar, Program Studi Teknik Metalurgi, Fakultas Teknik,Universitas Teknologi Sumbawa

Wafdan Muzakki, Program Studi Teknik Metalurgi, Fakultas Teknik,Universitas Teknologi Sumbawa

Rita Desiasni, Program Studi Teknik Metalurgi, Fakultas Teknik,Universitas Teknologi Sumbawa

Fauzi Widyawati, Program Studi Teknik Metalurgi, Fakultas Teknik,Universitas Teknologi Sumbawa

Syamsul Hidayat, Program Studi Teknik Metalurgi, Fakultas Teknik,Universitas Teknologi Sumbawa

License

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).