Model Mental dan Kemampuan Spasial Mahasiswa Tahun Pertama dan Ketiga Pendidikan Kimia di Universitas Mataram

Supriadi Supriadi, Wildan Wildan, Aliefman Hakim, L. R. Telly Savalas, Mukhtar Haris

Abstract

Pembelajaran kimia yang lengkap menuntut mahasiswa untuk memahami materi kimia dengan menghubungkan tiga level representasi, yaitu representasi makroskopik, simbolik, dan submikroskopik. Kemampuan menghubungkan ketiga level representasi tersebut disebut dengan model mental. Model mental terdiri atas model mental saintifik, sintetik, dan inisial. Dalam mengembangkan model mental, dibutuhkan kemampuan spasial. Penelitian ini bertujuan untuk mengidentifikasi model mental dan kemampuan spasial mahasiswa pendidikan kimia tahun pertama dan tahun ketiga Universitas Mataram dan menganalisis hubungan antara model mental dan kemampuan spasial mahasiswa. Ini merupakan penelitian eksperimen semu. Data dianalisis menggunakan uji beda (uji t) dan uji regresi linear. Berdasarkan uji t, tidak ada perbedaan model mental antara mahasiswa tahun pertama dan tahun kedua dengan nilai signifikansi sebesar 0,861>0,05. Selain itu, kemampuan spasial mereka juga tidak berbeda, yaitu dengan nilai signifikansi sebesar 0,328>0,05. Terdapat hubungan antara model mental dan kemampuan spasial mahasiswa. Sebagian besar mahasiswa tahun pertama (81,25%) dan tahun ketiga (79,5) memiliki kemampuan spasial sangat rendah. Selain itu, model mental dari sebagain besar mahasiswa tahun pertama dan tahun ketiga juga masih pada level paling rendah, yaitu level inisial. Hasil penelitian ini menunjukkan bahwa pembelajaran di kelas belum mampu meningkatkan kemampuan spasial dan model mental mahasiswa.

Keywords

problem based learning, keterampilan proses sains, kemampuan pemecahan masalah

Full Text:

PDF

References

Gilbert, J. K., & Treagust, D. F. (2009). Towards a coherent model for macro, submicro and symbolic representations in chemical education. In Multiple representations in chemical education (pp. 333-350). Springer, Dordrecht.

Jansoon, N., Coll, R. K., & Somsook, E. (2009). Understanding Mental Models of Dilution in Thai Students. International Journal of Environmental and Science Education, 4(2), 147-168.

Davidowitz, B., Chittleborough, G., & Murray, E. (2010). Student-generated submicro diagrams: A useful tool for teaching and learning chemical equations and stoichiometry. Chemistry Education Research and Practice, 11(3), 154-164.

Supriadi, S., Ibnu, S., & Yahmin, Y. (2018). Analisis model mental mahasiswa pendidikan kimia dalam memahami berbagai jenis reaksi kimia. Jurnal Pijar MIPA, 13(1), 1-5.

Devetak, I., Vogrinc, J., & Glažar, S. A. (2009). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research in Science Education, 39(2), 157-179.

Cheng, M., & Gilbert, J. K. (2009). Towards a better utilization of diagrams in research into the use of representative levels in chemical education. In Multiple representations in chemical education (pp. 55-73). Springer, Dordrecht.

Upahi, J. E., & Ramnarain, U. (2019). Representations of chemical phenomena in secondary school chemistry textbooks. Chemistry Education Research and Practice, 20(1), 146-159.

Akaygun, S. (2016). Is the oxygen atom static or dynamic? The effect of generating animations on students' mental models of atomic structure. Chemistry Education Research and Practice, 17(4), 788-807.

Chittleborough, G. (2004). The role of teaching models and chemical representations in developing students' mental models of chemical phenomena (Doctoral dissertation, Curtin University).

Al-Balushi, S. M., Al-Musawi, A. S., Ambusaidi, A. K., & Al-Hajri, F. H. (2017). The effectiveness of interacting with scientific animations in chemistry using mobile devices on grade 12 students’ spatial ability and scientific reasoning skills. Journal of Science Education and Technology, 26(1), 70-81.

Anggriawan, B., Effendy, E., & Budiasih, E. (2017). Kemampuan Spasial Dan Kaitannya Dengan Pemahaman Mahasiswa Terhadap Materi Simetri. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 2(12), 1612-1619.

Merchant, Z., Goetz, E. T., Keeney‐Kennicutt, W., Cifuentes, L., Kwok, O. M., & Davis, T. J. (2013). Exploring 3‐D virtual reality technology for spatial ability and chemistry achievement. Journal of Computer Assisted Learning, 29(6), 579-590.

Wahyuni, A., & Hidayati, D. W. (2020). PENGARUH KEMAMPUAN BERFIKIR KREATIF BERBASIS ICT TERHADAP KEMAMPUAN SPASIAL MAHASISWA. Jurnal Informa, 6(1), 6-9.

Kurnaz, M. A., & Eksi, C. (2015). An Analysis of High School Students' Mental Models of Solid Friction in Physics. Educational Sciences: Theory and Practice, 15(3), 787-795.

Suari, N. N. J. (2019). PROFIL MODEL MENTAL SISWA TENTANG LARUTAN ELEKTROLIT DAN NONELEKTROLIT. Jurnal Pendidikan Kimia Indonesia, 2(2), 59-63.

Suja, I. W. (2015). Model mental mahasiswa calon guru kimia dalam memahami bahan kajian stereokimia. JPI (Jurnal Pendidikan Indonesia), 4(2).

Dewi, K. M., Suja, I. W., & Sastrawidana, I. D. K. (2018). Model Mental Siswa Tentang Termokimia. Jurnal Pendidikan Kimia Undiksha, 2(2), 45-52.

Wu, H. K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 38(7), 821-842.

Bongers, A., Beauvoir, B., Streja, N., Northoff, G., & Flynn, A. B. (2020). Building mental models of a reaction mechanism: the influence of static and animated representations, prior knowledge, and spatial ability. Chemistry Education Research and Practice, 21(2), 496-512.

Harle, M., & Towns, M. (2011). A review of spatial ability literature, its connection to chemistry, and implications for instruction. Journal of Chemical Education, 88(3), 351-360.

Refbacks

  • There are currently no refbacks.