Representasi Makroskopik dan Simbolik Untuk Memahami Gaya Antarmolekul Pada Kromatografi Lapis Tipis

Authors

Sukib Sukib , Mutiah Mutiah

DOI:

10.29303/jpm.v15i3.1887

Published:

2020-06-29

Issue:

Vol. 15 No. 3 (2020): Juni

Keywords:

Representasi makroskopik, simbolik, gaya antarmolekul, KLT

Articles

Downloads

How to Cite

Sukib, S., & Mutiah, M. (2020). Representasi Makroskopik dan Simbolik Untuk Memahami Gaya Antarmolekul Pada Kromatografi Lapis Tipis. Jurnal Pijar Mipa, 15(3), 298–304. https://doi.org/10.29303/jpm.v15i3.1887

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Tujuan dari penelitian ini adalah untuk mengetahui hubungan antara penguasaan konsep gaya antarmolekul dengan konsep kromatografi lapis tipis KLT baik sebelum maupun sesudah pembelajaran menggunakan fenomena multi-level. Sebanyak 30 mahasiswa peserta kuliah pemisahan kimia digunakan sebagai sampel àPengambilan data dilakuan dengan cara tes tertulis. Langkah penelitian meliputi: identifikasi miskonsepsi tentang gaya antarmolekul dan konsep KLT, penerapan pembelajaran menggunakan fenomena multi-level, dan tes akhir tentang pemahaman gaya antar-molekul dalam KLT. Hasil penelitian menunjukan bahwa: (1) miskonsepsi mahasiswa pada konsep gaya antarmolekul adalah hal membedakan gaya antarmolekul dan intra-molekul, kekuatan relatif gaya antarmolekul, pengertian dan mekanisme terjadinya gaya London, (2) Miskonsepsi pada konsep KLT meliputi interaksi molekuler yang terjadi pada saat pemisahan, faktor penyebab perbedaan pergerakan analit, (3)à Secara statistik terdapat hubungan yang tinggi antara penguasaan konsep gaya antar molekul dengan pemahaman KLT, (4) Penerapan fenomena submikroskopis, simbolik, dan makroskopis mampu meningkatkan pemahaman siswa pada konsep gaya antarmolekul pada KLT

References

Haris, D.C. (2010). Quantitative Chemical Analysis 8th ed. W. H. Freeman and Company New York.

Brinkman, U. A. T.; dan De Vries, G. (2015). Small-Scale Thin-Layer Caldwell, B. D.; Zweerink, G. L.; Ducey, M. Separation of Caffeine from Beverages and Analysis Using Thin-Layer Chromatography and Gas Chromatography-Mass Spectrometry. J. Chem. Educ.: 92, 900-902.

Hess, A. V. I. (2007). Digitally Enhanced Thin-Layer Chromatography: An Inexpensive, New Technique for Qualitative and Quantitative Analysis. J. Chem. Educ.: 84, 842-847.

Sjursnes, B. J.; Kvittingen, L.; dan Schmid, R. (2015). Normal and ReversedPhase Thin Layer Chromatography of Green Leaf Extracts. J. Chem. Educ.: 92, 193-196.

Dickson, H.; Kittredge, K. W.; dan Sarquis, A. M. (2004). Thin-Layer Chromatography: The ââ¬Â³Eyesââ¬Â³ of the Organic Chemist. J. Chem. Educ.: 81, 1023-1025.

Starkey, R. (1986). Common chromatography misconception. Journal of Chemical Education, 63(6), 514.

Samide, M. J. (2008). Separation anxiety: An in-class game designed to help students discover chromatography. Journal of Chemical Education, 85(11), 1512-1514.

Lim, K., dan Lim, J. M. (2009). Macroscopic chromatography in the classroom. Lab Talk, 53(3), 30-35.

Caldwell, B. D.; Zweerink, G. L.; dan Ducey, M. (2015). Separation of Caffeine from Beverages and Analysis Using Thin-Layer Chromatography and Gas Chromatography-Mass Spectrometry. J. Chem. Educ.: 92, 900-902.

Kerr, E.; West, C.; dan Kradtap Hartwell, S. (2016). Quantitative KLT Image Analysis of Urinary Creatinine Using Iodine Staining and RGB Values. J. Chromatogr. Sci. : 54, 639-46.

Murthy, P. S. (2006). Molecular handshake: Recognition through weak covalent interactions.Journal of Chemical Education, 83(7), 1010-1013.

Struyf, J. (2011). An analytical approach for relating boiling points of monofunctional organic compounds to intermolecular forces. Journal of Chemical Education, 88, 937-943

Schultz, E. (2005). Simple dynamic models for hydrogen bonding using velcro-polarized molecular models. Journal of Chemical Education, 82(3), 401-405.

Schmidt, H.-J., Kaufmann, B., dan Treagust, D. F. (2009). Students' understanding of boiling points and intermolecular forces. Chemistry Education Research and Practice, 10, 265272.

Rompayom, P., Tambunchong, C., Wongyounoi, S., dan Dechsri, P. (2011). Using open-ended questions to diagnose students' understanding of inter- and intramolecular forces. US China Education Review B,1, 12-23.

Nyasulu, F., & Macklin, J. (2006). Intermolecular and intramolecular forces: A general laboratory comparison of hydrogen bonding in maleic and fumaric acids. Journal of Chemical Education, 83(5), 770-773.

Csizmar, C. M., Force, D. A., dan Warner, D. L. (2011). Implementation of gas chromatography and microscale distillation into the general chemistry laboratory curriculum as vehicles for examining intermolecular forces. Journal of Chemical Education, 88, 966-969.

Burcholder, P. R., Purser, G. H., dan Cole, R. S. (2008). Using molecular dynamics simulation to reinforce student understanding of intermolecular forces. Journal of Chemical Education,85(8), 1071-1077.

Treagust, D. F., Chittleborough, G., dan Mamiala, T. L. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Sci-ence Education 25(11), 1353-1368

Adbo, K. danTaber, K. S. (2009). Learners' mental models of the particle nature of matter: A study of 16-year-old Swedish science students. International Journal of Science Education, 31(6), 757-786.

Tarhan, L., Ayar-Kayali, H., Urek, R. O., dan Acar, B. (2008). Problem-based learning in 9th grade chemistry class: 'intermolecular forces'. Research in Science Education, 38(3), 285300.

Zumdahl, S.S dan Zumdahl, S.A. (2014). Chemistry Sixth Edition, Mary Finch, USA

[23] Jespersen, N.D. dan Brady, J.E. (2012). Chemistry Nine Edition, John Willey & Sons Incs. USA

Silberberg, M.S., (2010). Principles of General Chemistry Second Edition, McGraw-Hill Inc. New York, USA

Ebbing, D.D. dan Gammon, S.D. (2009). General Chemistry Ninth Edition, Houghton Mifflin Company, Boston, New York.

Person, E. C., Golden, D. R., dan Royce, B. R. 2010. Salting effects as an illustration of the

Smith, C. A., dan Villaescusa, F. W. (2003). Simulating chromatographic separations in the classroom. Journal of Chemical Education, 80(9), 1023-1025.

Chandrasegaran, A. L., Treagust, D. F., dan Mocerino, M. (2008). An evaluation of a teaching intervention to promote studentsââ¬â¢ ability to use multiple levels of representation when describing and explaining che-mical reactions. Rese-arch in Science Edu-cation, 38(2), 237-248.

Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., dan Mocerino, M. (2005). Students' perceptions of the role of models in the process of science and in the process of learning. Research in Science and Tech-nological Education, 23(2), 195-212.

Coll, R. K., dan Taylor, N. (2002). Mental models in chemistry: Senior chemistry students' mental models of chemical bonding. Chemistry Education: Research and Practice in Europe,3(2), 175-184.

Author Biographies

Sukib Sukib, Program Studi Pendidikan Kimia FKIP Universitas Mataram

Mutiah Mutiah, Program Studi Pendidikan Kimia FKIP Universitas Mataram

License

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).