Morphometric Analysis of Stingless Bee (Trigona sp.) in The Area of Kawasan Rumah Pangan Lestari (KRPL) Central Lombok
DOI:
10.29303/jpm.v16i5.2974Published:
2021-11-11Issue:
Vol. 16 No. 5 (2021): November 2021Keywords:
Morphology, Morphometry, Trigona fuscobalteata, Trigona clypearis, and size variationsArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
This study aims to determine the morphometric characteristics of the bee Trigona sp. in the Sustainable Food House Area (KRPL) Central Lombok. The research sample consisted of 28 samples of worker bees Trigona sp. taken from 14 colonies in KRPL. The study was conducted in October-November 2020. The morphological characters of each worker bee were observed and 33 morphometric characters were measured. The results of species identification based on morphological and morphometric characters showed that there were two species of Trigona sp. Those in KRPL are Trigona fuscobalteata and Trigona clypearis. The morphological differences that are quite clear between the two species are the structure of the hairbands on the meso scutum, the color of the abdomen, and the color of the wing venation. The color of the abdomen of Trigona fusco balteata is brownish yellow while the color of the abdomen of Trigona clypealis is blackish brown. Wing venation color the structure of the hairbands is more pronounced in Trigona fuscobalteata. Variations in the measured morphometric characteristics can be seen from the standard deviation values. The highest standard deviation values inspecies Trigona fuscobalteatawerehindwing found in length (SDñ0.26), body length (SDñ0.23), forewing length of tegula (SDñ0.19), and forewing length (SD). ñ0.18). Meanwhile, in the species, Trigona clypealis the highest standard deviation values were found in body length (SDñ0.20), forewing length of tegula (SDñ0.15), and forewing length (SDñ0.27).
References
Ngongeh, L. A., Idika, I. K., & Ibrahim Shehu, A. R. (2014). Climate change/global warming and its impacts on parasitology/entomology. Open Parasitology Journal, 5(1), 1ââ¬â11. https://doi.org/10.2174/1874421401405010001.
Adedeji, O., Reuben, O., & Olatoye, O. (2014). Global Climate Change. Journal of Geoscience and Environment Protection, 2(2), 114ââ¬â122.
Saptana, N., Sunarsih, N., & Friyatno, S. (2013). Prospek Model-Kawasan Rumah Pangan Lestari (M-KRPL) Dan Replikasi Pengembangan KRPL. Forum Penelitian Agro Ekonomi, 31(1), 67. https://doi.org/10.21082/fae.v31n1.2013.67-87.
Hamzah, A., & Lestari, S. U. (2016). Rumah pangan lestari organik sebagai solusi peningkatan pendapatan keluarga. Jurnal Akses Pengabdian Indonesia, 1(1), 65ââ¬â72.
Sunarti, Endriani, & Ajidirman. (2015). Pemberdayaan Masyarakat Berbasis Teknologi Model Rumah Pangan Lestari Di Kecamatan Kumpeh Ulu. Jurnal Pengabdian Pada Masyarakat, 30(1), 1ââ¬â9.
Ilhamdi, M. L. (2012). Keanekaragaman Serangga Dalam Tanah Di Pantai Endok Lombok Barat. Jurnal Pijar Mipa, 7(2), 55ââ¬â59. https://doi.org/10.29303/jpm.v7i2.95.
Quezada-Euán, J. J. G. (2018). Stingless Bees of Mexico. In Stingless Bees of Mexico. https://doi.org/10.1007/978-3-319-77785-6.
Yanto, S. H., Yoza, D., & Budiani, E. S. (2016). Potensi Pakan Trigona spp. Di Hutan Larangan Adat Desa Rumbio Kabupaten Kampar. JOM Faperta UR, 3(2), 1ââ¬â7.
Aulani, F., Artayasa, I. P., & Ilhamdi, M. L. (2013). Pengaruh Minyak Kayu Putih (Melaleuca leucadendron L.) Dan Minyak Serei (Cymbopogon nardus L.) serta Campurannya terhadap Tangkapan Lalat Buah Bactocera. Jurnal Biologi Tropis, 13(1), 19ââ¬â28.
.Saepudin, R. (2013). Lebah: Budidaya Berbasis Kawasan (1st ed.). Pertelon Media.
Wahyuni, N., & Anggadhania, L. (2020). The characteristic of stingless beeââ¬â¢s products (Tetragonula spp.) in Lombok Island. IOP.
Erniwati. (2013). Kajian Biologi Lebah Tak Bersengat (Apidae: Trigona) di Indonesia. Fauna Indonesia, 12(1), 29ââ¬â34.
Suriawanto, N. (2016). Keanekaragaman dan tempat bersarang lebah tak bersengat (hymenoptera: apidae) di sulawesi tengah. Institut Pertanian Bogor.
Kerr, N. Z., Crone, E. E., & Williams, N. M. (2019). Integrating vital rates explains optimal worker size for resource return by bumblebee workers. Functional Ecology, 33(3), 467ââ¬â478. https://doi.org/10.1111/1365-2435.13251
Chole, H., Woodard, S. H., & Bloch, G. (2019). Body size variation in bees: regulation, mechanisms, and relationship to social organization. Current Opinion in Insect Science, 35, 77ââ¬â87. https://doi.org/10.1016/j.cois.2019.07.006.
Suryawan, I. G., Mahrus, & Karnan. (2016). Studi Karakteristik Morfometrik Ikan Julung-Julung (Hemiramphus Archipelagicus) Di Daerah Intertidal Teluk Ekas. Jurnal Biologi Tropis, 16(2), 37ââ¬â42.
Dollin, A. E., Dollin, L. J., & Rasmussen, C. (2015). Australian and new guinean stingless bees of the genus austroplebeia moure (hymenoptera: Apidae) - A revision. In Zootaxa (Vol. 4047, Issue 1).
Sakagami, Smichi F. (1978). Tetragonula Stingless Bees of the Continental Asia and Sri Lanka (Hymenoptera, Apidae). J. Fac. Sci. Hokkaido University, Zoology, 21(2), 165- 247.
Smith D.R. 2012. Key to Workers of Indo-Malayan Stingless Bees, International Conference of the Asian Apicultural Association, 1(1): 1-42.
Riendriasari, S. D., & Krisnawati, K. (2017). Produksi Propolis Mentah ( Raw Propolis) Lebah Madu Trigona spp Di Pulau Lombok. ULIN: Jurnal Hutan Tropis, 1(1), 71ââ¬â75. https://doi.org/10.32522/u-jht.v1i1.797.
Kerisna, V., Diba, F., & Wulandari, R. S. (2019). Identifikasi Jenis Lebah Trigona Spp. Pada Zona Pemanfaatan Hutan Desa Menua Sadap Kecamatan Embaloh Hulu Kabupaten Kapuas Hulu. Jurnal Tengkawang, 9(2), 82ââ¬â91.
Quezada-Euaôn, J. J. G., Loôpez-Velasco, A., Peôrez-Balam, J., Paxton, H. M.-V., Velazquez-Madrazo, A., & J., R. (2011). Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides ( Hymenoptera , Meliponini ). Insectes Sociaux, 58, 31ââ¬â38. https://doi.org/10.1007/s00040-010-0113-2.
Araújo, E. D., Costa, M., Chaud-Netto, J., & Fowler, H. G. (2004). Body Size And Flight Distance In Stingless Bees (Hymenoptera: Meliponini): Inference Of Flight Range And Possible Ecological Implications. Braz. J. Biol, 64(3), 563ââ¬â568. Https://Doi.Org/10.1111/J.1530-0277.1996.Tb01638.X.
Greenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. (2007). Bee foraging ranges and their relationship to body size. Oecologia, 153, 589ââ¬â596. https://doi.org/10.1007/s00442-007-0752-9.
Veiga, J. C., Menezes, C., Venturieri, G. C., & Contrera, A. L. (2013). The bigger, the smaller: Relationship between body size and food stores in the stingless bee Melipona flavolineata. May. https://doi.org/10.1007/s13592-012-0183-4.
Author Biographies
Eliyan Irmasari, University of Mataram
Karnan Karnan, University of Mataram
Mohammad Liwa Ilhamdi, University of Mataram
License
Copyright (c) 2021 Eliyan Irmasari
This work is licensed under a Creative Commons Attribution 4.0 International License.
The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.
2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).