Comparison of the accuracy of seasonal data prediction values using SARIMA and winter exponential smoothing on the number of ship passengers in Batam City

Authors

Widya Reza

DOI:

10.29303/jpm.v18i4.5469

Published:

2023-07-31

Issue:

Vol. 18 No. 4 (2023): July 2023

Keywords:

SARIMA, Winter Exponential Smoothing, Forecasting

Articles

Downloads

How to Cite

Reza, W. . (2023). Comparison of the accuracy of seasonal data prediction values using SARIMA and winter exponential smoothing on the number of ship passengers in Batam City. Jurnal Pijar Mipa, 18(4), 632–637. https://doi.org/10.29303/jpm.v18i4.5469

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Sea transportation is one of the keys to the success of the tourism industry in a region. One of the problems faced in sea transportation is the increase in the number of passengers that is not balanced with the number of ships available. An accurate prediction model is very important in forecasting the number of passengers of a ship in order to prepare the number of ships according to the number of passengers. This study aims to compare the accuracy of prediction models on the number of ship passengers in Batam City whose data is fluctuating and contains seasonal patterns. In this study, secondary data was used in the form of the number of ship passengers in Batam City from January 2014 to December 2022. The methods used are SARIMA and Winter Exponential Smoothing. The results of this study show that the selected SARIMA model in forecasting the number of passengers in Batam City is SARIMA is SARIMA (0,1,1)(0,1,1)12 with an MSD value of 0.0000021. In contrast, the selected Winter Exponential Smoothing model is Winter Exponential Smoothing at alpha = 0.9, beta = 0.1, and delta = 0.1 with an MSD value of 0.00000. Based on these two models, the most accurate prediction model with the lowest MSD value in forecasting the number of ship passengers in Batam City is the Winter Exponential Smoothing model with values alpha = 0.9, beta = 0.1, and delta = 0.1.

References

Ahmed Shokeralla, A., Al Rahman Idress Al Sameeh, F., Gibreel Mohammed Musa, A., ELrhman Elsmih, F., & Shokeralla, A. A. (2020). Prediction the daily number of confirmed cases of covid-19 in Sudan with arima and holt winter exponential smoothing. Article in International Journal of Development Research, August.

Arifin, B., Tanaya, G. L. P., & Usman, A. (2021). Peramalan Harga Kelapa Sawit Dunia Pada Tahun 2020-2024. Prosiding Saintek LPPM Universitas Mataram, 3, 349–368.

ArunKumar, K. E., Kalaga, D. V., Mohan Sai Kumar, C., Kawaji, M., & Brenza, T. M. (2022). Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alexandria Engineering Journal, 61(10), 7585–7603.

ArunKumar, K. E., Kalaga, D. V., Sai Kumar, C. M., Chilkoor, G., Kawaji, M., & Brenza, T. M. (2021). Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Averag. Applied Soft Computing, 103(December 2019), 107161.

Ayunda, N., Ningsih, L., & Sari, A. N. (2022). Pengujian Model Multiplicative Holt Winter ’ s Exponential Smoothing dalam Peramalan Data Time-Series Terdampak Covid- Holt Winter ’ s Exponential Smoothing Multiplicative Model Testing for Time-Series Data Forcasting that Impacted by Covid-19. 12(1), 41–50.

Azmi, A. N., Ruhiat, D., & Kamilah, W. N. (2023). Pemodelan Forecasting Tingkat Inflasi di Indonesia Menggunakan Metode Triple Exponential Smoothing dan Seasonal Arima. 3, 19–29.

Fahik, D. S., & Jatipaningrum, M. T. (2021). Peramalan Jumlah Penumpang Penerbangan Internasional Di Bandar Udara Internasional Soekarno Hatta Dengan Metode Holt-Winters Exponential Smoothing Dan Seasonal Arima. Statistika Industri Dan Komputasi, 6(1), 77–87.

Fahrudin, R. (2018). Forecasting Tourist Visits Using Seasonal Autoregressive Integrated Moving Average Method. IOP Conference Series: Materials Science and Engineering, 407(1).

Golding, N., Hewitt, C., Zhang, P., Liu, M., Zhang, J., & Bett, P. (2019). Co-development of a seasonal rainfall forecast service: Supporting flood risk management for the Yangtze River basin. Climate Risk Management, 23(November 2018), 43–49.

Gupta, R., & Pal, S. K. (2020). Trend Analysis and Forecasting of COVID-19 outbreak in India. MedRxiv, 1–19.

Harizahayu, Harahap, A., Fathoni, M., & Sumardi, H. (2023). Prediction Farmer Exchange Rate Comparative Method of Analysis Holth-Winters Smoothing and Seasonal ARIMA (Vol. 1). Atlantis Press SARL.

Jere, S., Banda, A., Kasense, B., Siluyele, I., & Moyo, E. (2019). Forecasting Annual International Tourist Arrivals in Zambia Using Holt-Winters Exponential Smoothing. Open Journal of Statistics, 09(02), 258–267.

Kodippili, A., & Senaratne, D. (2017). Forecasting Tourist Arrivals to Sri Lanka Using Seasonal ARIMA. An International Peer-Reviewed Journal, 29(December), 2312–5179. www.iiste.org

Laksono, J., Kristiantoro, H., Tjahjadi, B., & Soewarno, N. (2018). Penentuan Lokasi Pembangunan Pusat Logistik Berikat Di Provinsi Jawa Timur Berdasar Aspek Sustainability Dengan Menggunakan Metode Analytic Hierarchy Process. EKUITAS (Jurnal Ekonomi Dan Keuangan), 1(3), 342–360.

Negara, R. I. P. (2021). Peramalan Jumlah Penumpang Kapal di Pelabuhan Pantai Baru dengan Metode Sarima Dan Winter ’ s Exponential Smoothing. Jstar, 1(1), 63–78.

Nurhamidah, N., Nusyirwan, N., & Faisol, A. (2020). Forecasting Seasonal Time Series Data Using the Holt-Winters Exponential Smoothing Method of Additive Models. Jurnal Matematika Integratif, 16(2), 151.

Nurjanah, I. S., Ruhiat, D., & Andiani, D. (2018). Implementasi Model Autoregressive Integrated Moving Average (Arima) Untuk Peramalan Jumlah Penumpang Kereta Api Di Pulau Sumatera. TEOREMA : Teori Dan Riset Matematika, 3(2), 145.

Pongdatu, G. A. N., & Putra, Y. H. (2018). Seasonal Time Series Forecasting using SARIMA and Holt Winter’s Exponential Smoothing. IOP Conference Series: Materials Science and Engineering, 407(1).

Putri, S., & Sofro, A. (2022). Peramalan Jumlah Keberangkatan Penumpang Pelayaran Dalam Negeri di Pelabuhan Tanjung Perak Menggunakan Metode ARIMA dan SARIMA. MATHunesa: Jurnal Ilmiah Matematika, 10(1), 61–67.

Rabbani, M. B. A., Musarat, M. A., Alaloul, W. S., Rabbani, M. S., Maqsoom, A., Ayub, S., Bukhari, H., & Altaf, M. (2021). A Comparison Between Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ES) Based on Time Series Model for Forecasting Road Accidents. Arabian Journal for Science and Engineering, 46(11), 11113–11138.

Rashed, Y., Meersman, H., Van De Voorde, E., & Vanelslander, T. (2017). Short-term forecast of container throughout: An ARIMA-intervention model for the port of Antwerp oa. Maritime Economics and Logistics, 19(4), 749–764.

Rezky, M., & Payu, F. (2019). Metode Exponential Smoothing Event Based ( Eseb ) Dan Metode Winter ’ S Exponential Smoothing ( Wes ) Untuk Peramalan Jumlah Penumpang Tiba di Pelabuhan Penyeberangan Gorontalo Exponential Smoothing Event Based ( ESEB ) Method And Winter ’ s Exponential S. 13(April), 199–204.

Rufino, C. C. (2018). Forecasting monthly tourist arrivals from ASEAN + 3 countries to the Philippines for 2015-2016 Using SARIMA Noise Modeling Forecasting. Research Gate, March.

Soeryawinata, J., Novianus, H., & Santoso, L. W. (2022). Sales Forecasting pada Dealer Motor X Dengan LSTM, ARIMA dan Holt-Winters Exponential Smoothing. Jurnal Infra.

Sugishita, Y., Kurita, J., Sugawara, T., & Ohkusa, Y. (2020). Forecast of the COVID-19 outbreak, collapse of medical facilities, and lockdown effects in Tokyo, Japan. MedRxiv, 2020.04.02.20051490.

Surabaya-jayapura, R., Ainul, E., Statistika, D., Matematika, F., & Data, S. (2019). Peramalan Penumpang Angkutan Laut di PT Pelayaran Nasional Indonesia ( Persero ) Cabang Surabaya. 8(2).

Tambuwun, P. F. A., Nainggolan, N., & Langi, Y. A. R. (2023). d ’ CartesiaN Jurnal Matematika dan Aplikasi Peramalan Banyaknya Penumpang Bandar Udara Internasional Sam Ratulangi Manado Dengan Metode Winter ’ s Exponential Smoothing dan Seasonal ARIMA.

Trull, Ó., García-Díaz, J. C., & Troncoso, A. (2020). Stability of multiple seasonal holt-winters models applied to hourly electricity demand in Spain. Applied Sciences (Switzerland), 10(7), 1–16.

Author Biography

Widya Reza, Department of Mathematics, Faculty of Information Technology, Institut Teknologi Batam

License

Copyright (c) 2023 Widya Reza

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).