Preparation of synthesis nanoparticles Fe3O4 based on iron sand Sumbawa

Authors

Syamsul Bahtiar , Fauzi Widyawati , Emsal Yanuar , Risky Ramadhan , Karen Zahra , Syamsul Hidayat

DOI:

10.29303/jpm.v18i6.5644

Published:

2023-11-30

Issue:

Vol. 18 No. 6 (2023): November 2023

Keywords:

Iron Sand, Alkalization, XRF, XRD, Nanoparticles, Magnetite

Articles

Downloads

How to Cite

Bahtiar, S., Widyawati, F. ., Yanuar, E. ., Ramadhan, R. ., Zahra, K. ., & Hidayat, S. (2023). Preparation of synthesis nanoparticles Fe3O4 based on iron sand Sumbawa . Jurnal Pijar Mipa, 18(6), 959–963. https://doi.org/10.29303/jpm.v18i6.5644

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Iron sand generally contains minerals such as ilmenite, magnetite, and hematite. Based on the results of previous tests, the main composition of iron sand in Rhee, Sumbawa regency, is magnetite. One method to increase the Fe content in iron sand is by pre-treatment with NaOH. NaOH is also used to precipitate heavy metals in a mineral. In this study, three variations were carried out with the ratio of NaOH: iron sand, namely: 1: 4, 2: 4, and 3: 4 at a temperature of 300 C. Furthermore, the calcination results were followed by the synthesis of Fe3O4 nanoparticles using the coprecipitation method. The results of the XRF characterization showed an increase in Fe levels after being processed by the alkalization treatment. The highest concentration was obtained in 1:4, with a Fe percentage of 91.1%. The results of the XRD characterization showed that the synthesis of Fe3O4 was successfully carried out with single phase Fe3O4 amlording to the data reference 96-9005839 forms and the space group F d -3 m. Crystal size analysis Using the Debey-Scherrer equation, the respective sizes were 12.7 nm, 8.71 nm, and 9.76 nm, respectively.

References

Ajeng Hefdea & Lydia Rohmawati. (2020a). Sintesis Fe3O4 dari Pasir Mineral Tulungagung Menggunakan Metode Kopresipitasi. Jurnal Inovasi Fisika Indonesia.

Li, X., Lv, W., Yang, W., Guo, Y., Huang, J., Liang, W., Huang, Y., Qin, A., Deng, X., Li, X., Chen, M., Yang, H., Liang, L., & Du, L. (2023). Poly (hydroxyethyl methacrylate—Acrylic acid) microspheres loaded with magnetically responsive Fe3O4 nanoparticles for arterial embolization, drug loading, and MRI detection. Journal of Drug Delivery Science and Technology, 79, 103993.

Ahmad Taufiq, S. Bahtiar, Sunaryono, Nurul Hidayat, A. Fuad, M. Diantoro, Arif Hidayat, Suminar Pratapa, & Darminto. (2010). Kajian Struktur Kristal Dan Dielektrisitas Nanopartikel Magnetite Berbasis Pasir Besi Doping Zn2+ Hasil Sintesis Metode kopresipitas. Jurnal Sains Materi Indonesia.

Gross, M. A., Monroe, K. A., Hawkins, S., Quirino, R. L., Moreira, S. G. C., Pereira-da-Silva, M. A., De Almeida, S. V., Faria, R. C., & Paterno, L. G. (2022). High-performance supercapacitor electrode based on a layer-by-layer assembled maghemite/magnetite/reduced graphene oxide nanocomposite film. Journal of Electroanalytical Chemistry, 908, 116123.

Ariti, A. M., Geleto, S. A., Gutema, B. T., Mekonnen, E. G., Workie, Y. A., Abda, E. M., & Mekonnen, M. L. (2023). Magnetite chitosan hydrogel enzyme with intrinsic peroxidase activity for smartphone-assisted colorimetric sensing of thiabendazole. Sensing and Bio-Sensing Research, 42, 100595.

Maroju, P. A., Ganesan, R., & Dutta, J. R. (2022). Fluorescence-based simultaneous dual oligo sensing of HCV genotypes 1 and 3 using magnetite nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 232, 112463.

Lemine, O. M., Omri, K., Zhang, B., El Mir, L., Sajieddine, M., Alyamani, A., & Bououdina, M. (2012).Sol–gel synthesis of 8nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices and Microstructures, 52(4), 793–799.

Molina-Calderón, L., Basualto-Flores, C., Paredes-García, V., & Venegas-Yazigi, D. (2022). Advances of magnetic nano hydrometallurgy using superparamagnetic nanomaterials as rare earth ions adsorbents: A grand opportunity for sustainable rare earth recovery. Separation and Purification Technology, 299, 121708.

Nkurikiyimfura, I., Wang, Y., Safari, B., & Nshingabigwi, E. (2020). Temperature-dependent magnetic properties of magnetite nanoparticles synthesized via coprecipitation method. Journal of Alloys and Compounds, 846, 156344.

Prasetyowati, R., Widiawati, D., Swastika, P. E., Ariswan, A., & Warsono, W. (2021). Sintesis dan Karakterisasi Nanopartikel Magnetit (Fe3O4) Berbasis Pasir Besi Pantai Glagah Kulon Progo dengan Metode Kopresipitasi pada Berbagai Variasi Konsentrasi NH4OH. Jurnal Sains Dasar, 10(2), 57–61.

Rahmawati, R., Taufiq, A., Sunaryono, S., Fuad, A., Yuliarto, B., Suytman, S., & Kurniadi, D. (2018). Synthesis of Magnetite (Fe 3 O 4 ) Nanoparticles from Iron Sands by Co—Precipitation—U ultrasonic Irradiation Methods. Journal of Materials and Environmental Sciences, 9(1), 155–160.

Sunaryono, Taufiq, A., Mashuri, Pratapa, S., Zainuri, M., Triwikantoro, & Darminto. (2015). Various Magnetic Properties of Magnetite Nanoparticles Synthesized from Iron-Sands by Coprecipitation Method at Room Temperature. Materials Science Forum, 827, 229–234.

Glory Riama, Austrin veranika, & Prasetyowati. (2012). The Effect of H2O2, NaOH Concentration and Time on the Degree of White Pulp From Pineapple Crown. Jurnal Teknik Kimia, 18, No.3.

Hidayat, S., Desiasni, R., & Novia, N. (2023). Effect of addition of an organic inhibitor of kersen leaf extract (Muntingia calabura L) on corrosion rate on A36 steel in seawater media. Jurnal Pijar Mipa, 18(4), 601–607.

Aristanti, Y., Supriyatna, Y. I., Masduki, N. P., & Soepriyanto, S. (2018). Decomposition of banten ilmenite by caustic fusion process for TiO 2 photocatalytic applications. IOP Conference Series: Materials Science and Engineering, 285, 012005.

Su, B., Mochizuki, Y., Higuchi, K., & Tsubouchi, N. (2023). Effects of various factors on gangue removal in alkaline hydrothermal treatment of iron ores. Minerals Engineering, 203, 108329.

Bahtiar, S., Taufiq, A., Sunaryono, Hidayat, A., Hidayat, N., Diantoro, M., Mufti, N., & Mujamilah. (2017). Synthesis, Investigation on Structural and Magnetic Behaviors of Spinel M-Ferrite [M = Fe; Zn; Mn] Nanoparticles from Iron Sand. IOP Conference Series: Materials Science and Engineering, 202, 012052.

Taufiq, A., Bahtiar, S., Saputro, R. E., Yuliantika, D., Hidayat, A., Sunaryono, S., Hidayat, N., Samian, S., & Soontaranon, S. (2020). Fabrication of Mn1Zn Fe2O4 ferrofluids from natural sand for magnetic sensors and radar-absorbing materials. Heliyon, 6(7), e04577.

Radoń, A., Kubacki, J., Kądziołka-Gaweł, M., Gębara, P., Hawełek, Ł., Topolska, S., & Łukowiec, D. (2020). Structure and magnetic properties of ultrafine superparamagnetic Sn-doped magnetite nanoparticles synthesized by glycol-assisted coprecipitation method. Journal of Physics and Chemistry of Solids, 145, 109530.

Taufiq, A., Saputro, R. E., Susanto, H., Hidayat, N., Sunaryono, S., Amrillah, T., Wijaya, H. W., Mufti, N., & Simanjuntak, F. M. (2020). Synthesis of Fe3O4/Ag nanohybrid ferrofluids and their applications as antimicrobial and antifibrotic agents. Heliyon, 6(12), e05813.

Arif, S., Nawaz, M., Siddique, S., Ayub, R., & Saleem, S. (2022). Synthesis, characterization, and photocatalytic activity of Mg1−xCuxO nanoparticles for wastewater treatment. Materials Today Communications, 33, 104361.

Author Biographies

Syamsul Bahtiar, Universitas Teknologi Sumbawa

Fauzi Widyawati, Department of Metallurgical Engineering, Faculty of Mineralogy and Environmental Technology. Sumbawa University of Technology

Emsal Yanuar, Department of Metallurgical Engineering, Faculty of Mineralogy and Environmental Technology. Sumbawa University of Technology

Risky Ramadhan, Department of Metallurgical Engineering, Faculty of Mineralogy and Environmental Technology. Sumbawa University of Technology

Karen Zahra, Department of Metallurgical Engineering, Faculty of Mineralogy and Environmental Technology. Sumbawa University of Technology

Syamsul Hidayat, Department of Environmental Engineering, Faculty of Mineralogy and Environmental Technology. Sumbawa University of Technology

License

Copyright (c) 2023 Syamsul Bahtiar, Fauzi Widyawati, Emsal Yanuar, Risky Ramadhan, Karen Zahra, Syamsul Hidayat

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).