Fabrication of carbon pasta elektroda composition modified with nanobentonite and nano TiO2 for niacinamide detection sensor
DOI:
10.29303/jpm.v18i6.5847Published:
2023-11-29Issue:
Vol. 18 No. 6 (2023): November 2023Keywords:
Niacinamide, Electrode, Voltametry Cyclic, Nanobentonit, Nano TiO2Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Niacinamide is the amide form of vitamin B3, which is usually analyzed for concentration using UV-Vis Spectrophotometry, HPLC, and KLT. The development of niacinamide analysis methods using cyclic voltammetry has not been widely studied. The use of working electrodes in cyclic voltammetry is usually carbon paste electrodes. However, these electrodes have disadvantages, relatively low sensitivity and slower electron transfer kinetics, so it is necessary to research working electrode modification to increase electrode sensitivity. This study aims to determine the effect of the addition of nanobentonite and nano TiO2 on carbon paste electrodes in improving electron transfer and electrode sensitivity in the analysis of niacinamide by cyclic voltammetry. Variations in electrode composition were conducted to determine the optimum composition in measuring niacinamide solution and the optimum pH in measuring niacinamide. Nanobentonite obtained from the synthesis using the sonochemical method produces an average particle size of 46.9 nm, and the composition of carbon, paraffin, nanobentonite, and nano TiO2 electrodes with a variation of 3:2:3:2 b/v has the highest current peak. The better the conductivity of the working electrode, the greater the maximum current peak produced due to the easy transfer of electrons for the reduction and oxidation reaction process. Using a buffer solution to adjust the pH of the niacinamide solution affects the analysis process, as evidenced by the IpA value at pH 7. The effect of pH variation also affects the stability of existing ions. So that the resulting current is higher, the higher the peak current value produced indicates, the more sensitive the electrode is due to high electron transfer. It maximizes the analysis of the concentration of the test solution because the measured concentration is linear with the measured current.
References
Snaidr, V. A., Damian, D. L., & Halliday, G. M. (2019). Nicotinamide for photoprotection and skin cancer chemoprevention: A review of efficacy and safety. Experimental Dermatology, 28, 15–22.
Wohlrab, J., & Kreft, D. (2014). Niacinamide—Mechanisms of Action and Its Topical Use in Dermatology. Skin Pharmacology and Physiology, 27(6), 311–315.
Forbat, E., Al-Niaimi, F., & Ali, F. R. (2017). Use of nicotinamide in dermatology. Clinical and Experimental Dermatology, 42(2), 137–144.
Boo, Y. C. (2021). Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants, 10(8), 1315.
Chiu, P.-C., Chan, C.-C., Lin, H.-M., & Chiu, H.-C. (2007). The clinical anti-aging effects of topical kinetin and niacinamide in Asians: A randomized, double-blind, placebo-controlled, split-face comparative trial: Anti-aging effects of kinetin and niacinamide. Journal of Cosmetic Dermatology, 6(4), 243–249.
Gehring, W. (2004). Nicotinic acid/niacinamide and the skin. Journal of Cosmetic Dermatology, 3(2), 88–93.
Siswanto, A., Fudholi, A., Nugroho, A. K., & Martono, S. (2017). Validasi Metode HPLC untuk Penetapan Aspirin dan Asam Salisilat dalam Plasma Kelinci (Lepus curpaeums) secara Simultan. Jurnal Kefarmasian Indonesia, 6(2), 68–78. https://doi.org/10.22435/jki.v6i2.6221.68-78
Cadre, J. E., Martínez, A., Pérez, M. D. los Á., & Reyes, J. A. (2019). Voltammetric method for the quantification of cadmium using non-commercial electrodes and minimal instrumentation. Eclética Química Journal, 44(1), 53.
Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2), 197–206.
Tajik, S., Beitollahi, H., Nejad, F. G., Safaei, M., Zhang, K., Van Le, Q., Varma, R. S., Jang, H. W., & Shokouhimehr, M. (2020). Developments and applications of nanomaterial-based carbon paste electrodes. RSC Advances, 10(36), 21561–21581.
Kheirabadi, N. R., Nezamzadeh-Ejhieh, A., & Aghaei, H. (2022). Cyclic and Linear Sweep Voltammetric Studies of a Modified Carbon Paste Electrode with Nickel Oxide Nanoparticles toward Tamoxifen: Effects of Surface Modification on Electrode Response Kinetics. ACS Omega, 7(35), 31413–31423.
Abood, E. (2021). New Fe2O3 Nanoparticles Modified Carbon Paste Electrode: A Cyclic Voltammetric Study Abstract. Egyptian Journal of Chemistry, 0(0), 0–0.
Bukit, F. R. A., Frida, E., & Bukit, N. (2021). Karakterisasi dan Analisis Bentonit Alam Sebagai Bahan Pengisi Komposit. Juitech, 5(2).
Triana, S. (2020). Elektroda Pasta Karbon Termodifikasi TiO2 Nano Untuk Deteksi Bisfenol-A (BPA) dalam Air Mineral Secara Voltammetri [Tugas Akhir]. Universitas Islam Indonesia.
Ningsih, S. K. W., Sanjaya, H., Bahrizal, B., Nasra, E., & Yurnas, S. (2021). Synthesis of Cu 2+ Doped ZnO by the Combination of Sol-Gel-Sonochemical Methods with Duck Egg Albumen as Additive for Photocatalytic Degradation of Methyl Orange. Indonesian Journal of Chemistry, 21(3), 564–574.
Głowniak, S., Szczęśniak, B., Choma, J., & Jaroniec, M. (2023). Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules, 28(6), 2639.
Machfud, M., & Rusmini, R. (2017). Pengaruh Waktu Interaksi Bentonit Teraktivasi Terhadap Daya Serap Iodium. Indonesian Chemistry and Application Journal, 1(1), 10.
Abdou, M. I., Al-sabagh, A. M., & Dardir, M. M. (2013). Evaluation of Egyptian bentonite and nano-bentonite as drilling mud. Egyptian Journal of Petroleum, 22(1), 53–59.
Darvishi, Z. & Morsali, A. (2011). Synthesis and characterization of Nano-bentonite by sonochemical method. Ultrasonics Sonochemistry, 18(1), 238–242.
Ramazani, M., Farahmandjou, M., & Firoozabadi, T. P. (2015). Effect of Nitric acid on Particle Morphology of the Nano-TiO2. Int. J. Nanosci. Nanotechnol, 11(2).
Magzoub, M. I., Hussein, I. A., Nasser, M. S., Mahmoud, M., Sultan, A. S., & Benamor, A. (2020). An Investigation of the Swelling Kinetics of Bentonite Systems Using Particle Size Analysis. Journal of Dispersion Science and Technology, 41(6), 817–827.
Wijeratne, K. (2018). Conducting Polymer Electrodes for Thermogalvanic Cells. Linköping University Electronic Press.
Huang, Y.-R., Chuang, P.-H., & Chen, C.-L. (2015). Molecular-dynamics calculation of the thermal conduction in phase change materials of graphene paraffin nanocomposites. International Journal of Heat and Mass Transfer, 91, 45–51.
Bukkitgar, S. D., & Shetti, N. P. (2017). Fabrication of a TiO 2 and clay nanoparticle composite electrode as a sensor. Analytical Methods, 9(30), 4387–4393.
Author Biographies
Dhea Anggraini Putri, Chemistry Study Program, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya
Pirim Setiarso, Chemistry Study Program, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya
License
Copyright (c) 2023 Dhea Anggraini Putri, Pirim Setiarso
This work is licensed under a Creative Commons Attribution 4.0 International License.
The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.
2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).