Cyclic Voltammetry Method for Analysis of Phosphate Concentration in Water

Authors

Qomariyah Agustin , Pirim Setiarso

DOI:

10.29303/jpm.v19i1.6090

Published:

2024-01-27

Issue:

Vol. 19 No. 1 (2024): January 2024

Keywords:

Analysis; Cyclic Voltammetry; Method; Phosphate; Water

Articles

Downloads

How to Cite

Agustin, Q., & Setiarso, P. (2024). Cyclic Voltammetry Method for Analysis of Phosphate Concentration in Water. Jurnal Pijar Mipa, 19(1), 145–149. https://doi.org/10.29303/jpm.v19i1.6090

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Phosphate is a nontoxic element but a limiting element for productivity. Several methods have been established to analyze the phosphate concentration in water. This study aims to analyze phosphate concentration in water using the voltammetry method using cyclic voltammetry. Cyclic voltammetry is an electroanalytical method that measures the current outcome of oxidation-reduction reactions in response to the potential. The current outcome is directly proportional to the phosphate concentration in the solution. The calibration curve was formed from the KH2PO4 standard solution using concentrations of 0.1 mg/L, 0.2 mg/L, 0.4 mg/L, 0.8 mg/L, and 1.6 mg/L. The voltammogram showed that the analyte does not have an anode peak current (Ipa), which means that the analyte solution did not have an oxidation reaction, so the cathode peak current (Ipc) value was used. Based on the calibration curve, the linear regression graph with a straight-line equation is y = -0,00000645632x - 0,000208737 with R2 of 0,99737. Meanwhile, this cyclic voltammetry method was validated by calculating the LOD and LOQ values; the results are 0.1034 mg/L and 0.3134 mg/L, respectively. Hence, based on the analysis of phosphate concentration in water samples, this method works satisfactorily and is suitable for routine analysis because of its advantages.

References

Adelowo, F. E., & Agele, S. O. (2016). Spectrophotometric analysis of phosphate concentration in agricultural soil samples and water samples using molybdenum blue method. Brazilian Journal of Biological Sciences, 3(6), 407–412.

Habibah, N., Dhyanaputri, I. G. A. S., Karta, I. W., Sundari, C. D. W. H., & Hadi, M. C. (2018). A Simple Spectrophotometric Method for The Quantitative Analysis of Phosphate in The Water Samples. JST (Jurnal Sains Dan Teknologi), 7(2), 198–204.

Anschutz, P., & Deborde, J. (2016). Spectrophotometric determination of phosphate in matrices from sequential leaching of sediments. Limnology and Oceanography: Methods, 14(4), 245–256.

Guo, Z., Li, K., Jiang, L., Ran, Y., Sarkodie, E. K., Yang, J., Shi, J., Liu, S., Li, M., Li, J., Liu, H., Liang, Y., Yin, H., & Liu, X. (2022). Removal mechanisms of phosphate from water by calcium silicate hydrate supported on hydrochar derived from microwave-assisted hydrothermal treatment. Environmental Technology & Innovation, 28, 102942.

Nejdl, L., Kynicky, J., Brtnicky, M., Vaculovicova, M., & Adam, V. (2017). Amalgam Electrode-Based Electrochemical Detector for On-Site Direct Determination of Cadmium(II) and Lead(II) from Soils. Sensors, 17(8), 1835.

Najih, A., & Setiarso, P. (2016). Pembuatan Elektroda Pasta Karbon Termodifikasi Zeolit untuk Analisis Logam Fe(Ii) dengan Ion Pengganggu Zn(II) dan Cd(II) Secara Cyclic Stripping Voltammetry. UNESA Journal of Chemistry, 5(3), 76–85.

Putri, P. E., & Setiarso, P. (2020). Sintesis Dan Karakterisasi Graphene Oxide-Nanozeolit Sebagai Elektroda Kerja Dalam Siklik Voltametri. UNESA Journal of Chemistry, 9(1), 1–7.

Mulyono, D. I. S., & Setiarso, P. (2018). Penggunaan Graphene Oxida (GO) Sebagai Elektroda Kerja Untuk Analisis Fenol Secara Cyclic Voltammetry. UNESA Journal of Chemistry, 7(3), 105–111.

Rofiansyah, A., & Setiarso, P. (2016). Penggunaan Zeolit Sebagai Modifier Elektroda Pasta Karbon Untuk Analisis Cd (II) Secara Cyclic Stripping Voltametry. UNESA Journal of Chemistry, 5(3).

Rusnadi, W. R., & Setiarso, P. (2020). Pembuatan Elektroda Nano Karbon untuk Analisis Logam Pb(II) secara Siklik Voltametri. UNESA Journal of Chemistry, 9(1), 71–76.

Setiarso, P., & Hidayatulloh, T. (2019). Graphene oxide-paraffin as Working Electrode for Cyclic Voltammetry Analysis for Cadmium (II). Asian Journal Of Chemistry, 31(3), 575–580.

Moosavi, S. M., & Ghassabian, S. (2018). Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability. In Calibration and Validation of Analytical Methods - A Sampling of Current Approaches. InTech.

Uhrovčík, J. (2014). Strategy for determination of LOD and LOQ values – Some basic aspects. Talanta, 119, 178–180.

Sari, N. P., & Setiarso, P. (2020). Pembuatan Elektroda Kerja Graphene Oxide Termodifikasi Nano Bentonit untuk Analisis Asam Nikotinat secara Voltametri Siklik. Unesa Journal of Chemistry, 9(3), 170–178.

Setiarso, P., & Inggriani, F. (2020). Synthesis of Graphene Oxide-Nanozeolite Composite Electrode for Aspirin Analysis by Cyclic Voltammetry. Asian Journal of Chemistry, 32(10), 2541–2544.

Suprasetyo, A. (2016). Penentuan Kadar Fenol Pada Air Sungai Secara Cyclic Stripping Voltammetry Dengan Menggunakan Elektroda Pasta Karbon Termodifikasi Zeolit. Universitas Negeri Surabaya.

Artmann, E., Forschner, L., Jacob, T., & Engstfeld, A. K. (2022). Using auxiliary electrochemical working electrodes as probe during contact glow discharge electrolysis: A proof of concept study. Journal of Vacuum Science & Technology A, 40(5), 053005.

Fatiatun, F., & Swasti, I. M. (2022). Efisiensi Counter Electrode Dengan Pengurangan Pemakaian Platina Menggunakan Komposit Bahan Ramah Lingkungan Grafin Dan Carbon Nanotubes Untuk Aplikasi Dye Sensitized Solar Cells. Indonesian Journal of Applied Physics, 12(2), 266.

Alva, S., Binti Abdul Aziz, A. S., Bin Syono, M. I., & Bin Wan Jamil, W. A. (2018). Ag/AgCl Reference Electrode Based on Thin Film of Arabic Gum Membrane. Indonesian Journal of Chemistry, 18(3), 479.

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia, 126(5), 1763–1768.

Kruve, A., Rebane, R., Kipper, K., Oldekop, M.-L., Evard, H., Herodes, K., Ravio, P., & Leito, I. (2015). Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part II. Analytica Chimica Acta, 870, 8–28.

Halim, A. M., Fauziah, A., & Aisyah, N. (2022). Kesesuaian Kualitas Air pada Tambak Udang Vannamei (Litopenaeus vannamei) di CV. Lancar Sejahtera Abadi, Probolinggo, Jawa Timur. Chanos Chanos, 20(2), 77.

Author Biographies

Qomariyah Agustin, Universitas Negeri Surabaya

Pirim Setiarso, Universitas Negeri Surabaya

License

Copyright (c) 2024 Qomariyah Agustin, Pirim Setiarso

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.