Synthesis and Characterization of Copper Nanoparticles with Bioreductor Carica Dieng (Carica pubescens) Seed Extract

Authors

Fifin Setiani , Suyatno Suyatno

DOI:

10.29303/jpm.v19i1.6124

Published:

2024-01-27

Issue:

Vol. 19 No. 1 (2024): January 2024

Keywords:

Bioreductor; Carica Dieng Seeds; Copper Nanoparticles; Copper Sulfate

Articles

Downloads

How to Cite

Setiani, F., & Suyatno, S. (2024). Synthesis and Characterization of Copper Nanoparticles with Bioreductor Carica Dieng (Carica pubescens) Seed Extract . Jurnal Pijar Mipa, 19(1), 150–155. https://doi.org/10.29303/jpm.v19i1.6124

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Secondary metabolite compounds in plants act as bioreductors in the metal reduction process and complement inorganic reductants. This study studied the characteristics of copper nanoparticles using Carica Dieng (Carica pubescens) seed extract. The synthesis of copper nanoparticles was carried out using the green synthesis method by reducing CuSO4 10 mM with distilled water extract from Carica Dieng (Carica pubescens) seeds. The Synthesis was carried out with the ratio of the composition of the extract and CuSO4 solution 1:3 at pH 10. Nanoparticles were then characterized using UV-Vis spectrophotometer and PSA (Particle Size Analyzer) instruments. The characterization results using a UV-Vis Spectrophotometer showed a maximum absorption peak at a wavelength of 535 nm; the wavelength is included in the wavelength range of copper nanoparticles, which ranges from 500-700 nm. The particle size distribution analyzed using PSA shows an average size of 14.49 nm; this size is included in the range of nanoparticle sizes, which is between 1-100 nm, thus proving that nanoparticles have been successfully formed, the Poly Dispersity Index (PDI) value obtained is 0.1943 which indicates that the nanoparticle sample is categorized as homogeneous so that it has uniform size uniformity.

References

Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological Synthesis of nanoparticles from plants and microorganisms. In Trends in Biotechnology (Vol. 34, Issue 7, pp. 588–599). Elsevier Ltd.

Chellaram, C., Murugaboopathi, G., John, A. A., Sivakumar, R., Ganesan, S., Krithika, S., & Priya, G. (2014). Significance of nanotechnology in the food industry. APCBEE Procedia, 8, 109–113.

Kavitha, K. S., Baker, S., Rakshith, D., Kavitha, H. U., C, Y. R. H., Harini, B. P., & Satish, S. (2013). Plants are a green source for the synthesis of nanoparticles. International Research Journal of Biological Sciences, 2(6), 66–76.

Wisnuwardhani, H. A., Roosma, A., Lukmayani, Y., & Arumsari, A. (2019). Optimasi kondisi sintesis nanopartikel tembaga menggunakan ekstrak biji melinjo (Gnetum gnemon L.). Jurnal Ilmiah Ibnu Sina, 4(2), 353–360.

Amin, R. R. (2022). Green synthesis and characterization of silver nanoparticles derived from ethanol extract of sappan wood. International Journal of Current Science Research and Review, 05(07), 2396–2403.

Joseph, A. T., Prakash, P., & Narvi, S. S. (2016). Phytofabrication and characterization of copper nanoparticles using Allium sativum and its anti-bacterial activity. International Journal of Science, Engineering, and Technology, 4(2), 463–472.

Kolekar, R. V., Bhade, S. P. D., Kumar, R., Reddy, P., Singh, R., & Pradeepkumar, K. S. (2015). Biosynthesis of copper nanoparticles using aqueous extract of Eucalyptus sp. plant leaves. Current Science, 109(2), 255–257.

Thiruvengadam, M., Chung, I. M., Gomathi, T., Ansari, M. A., Gopiesh Khanna, V., Babu, V., & Rajakumar, G. (2019). Synthesis, characterization, and pharmacological potential of green synthesized copper nanoparticles. Bioprocess and Biosystems Engineering, 42(11), 1769–1777.

Alavi, M., & Karimi, N. (2018). Characterization, anti-bacterial, total antioxidant, scavenging, reducing power, and ion chelating activities of green synthesized silver, copper, and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artificial Cells, Nanomedicine and Biotechnology, 46(8), 2066–2081.

Khan, A., Rashid, A., Younas, R., & Chong, R. (2016). A chemical reduction approach to the Synthesis of copper nanoparticles. International Nano Letters, 6(1), 21–26. https://doi.org/10.1007/s40089-015-0163-6

Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. In Biotechnology Advances (Vol. 31, Issue 2, pp. 346–356).

Abboud, Y., Saffaj, T., Chagraoui, A., El Bouari, A., Brouzi, K., Tanane, O., & Ihssane, B. (2014). Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Applied Nanoscience (Switzerland), 4(5), 571–576.

Kumar, P. P. N. V., Shameem, U., Kollu, P., Kalyani, R. L., & Pammi, S. V. N. (2015). Green Synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its anti-bacterial activity against fish bacterial pathogens. BioNanoScience, 5(3), 135–139.

Vijayan, R., Joseph, S., & Mathew, B. (2019). Green Synthesis of silver nanoparticles using Nervalia zeylanica leaf extract and evaluation of their antioxidant, catalytic, and antimicrobial potentials. Particulate Science and Technology, 37(7), 805–815.

Rajeshkumar, S., Menon, S., Venkat Kumar, S., Tambuwala, M. M., Bakshi, H. A., Mehta, M., Satija, S., Gupta, G., Chellappan, D. K., Thangavelu, L., & Dua, K. (2019). Anti-bacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. Journal of Photochemistry and Photobiology B: Biology, 197(April).

Johnson, M., Santhanam, A., Thangaiah, S., & Janakiraman, N. (2018). Green Synthesis of silver nanoparticles using Cyathea nilgirensis Holttum and their cytotoxic and phytotoxic potentials. Particulate Science and Technology, 36(5), 578–582.

Francis, P. K., Sivadasan, S., Avarachan, A., & Gopinath, A. (2020). A novel green synthesis of gold nanoparticles using seaweed Lobophora variegata and its potential application in the reduction of nitrophenols. Particulate Science and Technology, 38(3), 365–370.

Nagar, N., & Devra, V. (2018). Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Materials Chemistry and Physics, 213, 44–51.

Punniyakotti, P., Panneerselvam, P., Perumal, D., Aruliah, R., & Angaiah, S. (2020). Anti-bacterial and anti-biofilm properties of green synthesized copper nanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess and Biosystems Engineering, 43(9), 1649–1657.

Asmathunisha, N., & Kathiresan, K. (2013). A Review on Biosynthesis of nanoparticles by marine organisms. In Colloids and Surfaces B: Biointerfaces (Vol. 103, pp. 283–287).

Keat, C. L., Aziz, A., Eid, A. M., & Elmarzugi, N. A. (2015). Biosynthesis of nanoparticles and silver nanoparticles. Bioresources and Bioprocessing, 2(1), 47.

Shende, S., Ingle, A. P., Gade, A., & Rai, M. (2015). Green Synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World Journal of Microbiology and Biotechnology, 31(6), 865–873.

Kumar, M., Kaushik, D., Kumar, A., Gupta, P., Proestos, C., Oz, E., Orhan, E., Kaur, J., Khan, M. R., Elobeid, T., Bordiga, M., & Oz, F. (2023). Green Synthesis of copper nanoparticles from Nigella sativa seed extract and evaluation of their anti-bacterial and antiobesity activity. International Journal of Food Science and Technology, 58(6), 2883–2892.

Gopalakrishnan, V., & Muniraj, S. (2019). Neem flower extract assisted green Synthesis of copper nanoparticles - Optimisation, characterisation and anti-bacterial study. Materials Today: Proceedings, 36(xxxx), 832–836.

Naghdi, S., Sajjadi, M., Nasrollahzadeh, M., Rhee, K. Y., Sajadi, S. M., & Jaleh, B. (2018). Cuscuta Reflexa leaf extract mediated green Synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes. Journal of the Taiwan Institute of Chemical Engineers, 86, 1–16.

Khani, R., Roostaei, B., Bagherzade, G., & Moudi, M. (2018). Green Synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and anti-bacterial assay. Journal of Molecular Liquids, 255, 541–549.

Sholekah, F. F. (2017). Perbedaan ketinggian tempat terhadap kandungan flavonoid dan beta karoten buah karika (Carica pubescens) daerah dieng wonosobo. Prosiding Seminar Nasional Pendidikan Biologi Dan Biologi, 75–82.

Tambunan, B., & Yetty, N. (2019). Pengaruh berbagai konsentrasi ekstrak biji karika ( Carica pubescens ) terhadap kematian larva nyamuk Culex pp. Jurnal Riset Kesehatan Poltekkes Depkes Bandung, 11(1), 1–8. juriskes.com

Kurniawan, S., Prasidha, R. I., Dewi, D. K., & Kusuma, T. M. (2018). potensi gel biji carica sebagai antioksidan. Prosiding APC (Annual Pharmacy Conference), 54–58.

Supono, Sugiyarto, & Susilowati, A. (2014). Potensi ekstrak biji karika (Carica pubescens) sebagai larvasida nyamuk Aedes aegypti. EL-VIVO, 2(1), 78–79.

Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2021). Green Synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19(1), 355–374.

Supono, Sugiyarto, Susilowati, A., Purwantisari, S., & Kurniawati, F. N. (2015). Biokontrol larva nyamuk Aedes aegypti menggunakan limbah biji karika (Vasconcellea pubescens) . Pros Sem Nas Masy Biodiv Indon, 1127–1131.

Setiyoko, F. A. (2018). Biosintesis dan evaluasi anti mikroba nanopartikel tembaga (Cu) menggunakan ekstrak daun sirsak (Annona muricata L.).

Ahmed, M., Ji, M., Qin, P., Gu, Z., Liu, Y., Sikandar, A., Iqbal, M. F., & Javeed, A. (2019). Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis l. and Cannabis sativa L. Applied Ecology and Environmental Research, 17(3), 6961–6979.

Priyanka Dash, S., Dixit, S., & Sahoo, S. (2017). Phytochemical and biochemical characterizations from leaf extracts from Azadirachta Indica: An important medicinal plant. Biochemistry & Analytical Biochemistry, 06(02).

Minarno, E. B. (2015). Skrining fitokimia dan kandungan total flavonoid pada buah Carica pubescens Lenne & K. Koch di kawasan Bromo, Cangar, dan Dataran Tinggi Dieng. El-Hayah, 5(2), 73–82.

Kathiravan, V., Ravi, S., Ashokkumar, S., Velmurugan, S., Elumalai, K., & Khatiwada, C. P. (2015). Green Synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their anti-bacterial and antifungal activities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 139, 200–205.

Sari, R. N., Nurhasni, N., & Yaqin, M. A. (2017). Sintesis nanopartikel ZnO ekstrak Sargassum sp. dan karakteristik produknya. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 238.

Handoyo, D. L. Y., & Pranoto, M. E. (2020). Pengaruh variasi suhu pengeringan terhadap pembuatan simplisia daun mimba (Azadirachta Indica). Jurnal Farmasi Tinctura, 1(2), 45–54.

Dewatisari, W. F., Rumiyanti, L., & Rakhmawati, I. (2018). Rendemen dan skrining fitokimia pada Ekstrak daun Sanseviera sp. Jurnal Penelitian Pertanian Terapan, 17(3), 197.

Oktavia, I. N., & Sutoyo, S. (2021). Synthesis of silver nanoparticles using bioreductor from plant extract as an antioxidant. UNESA Journal of Chemistry, 10(1), 37–54.

Hase, G. J., Bharati, K. T., Deshmukh, K. K., Phatangre, N. D., Rahane, A., & Dokhe, S. (2016). Synthesis and characterization of Cu nanoparticles of Leucas chinesis L. plant. European Journal of Pharmaceutical and Medicinal Research, 3(5), 241–242.

Din, M. I., Arshad, F., Hussain, Z., & Mukhtar, M. (2017). Green Adeptness in the Synthesis and stabilization of copper nanoparticles: Catalytic, anti-bacterial, cytotoxicity, and antioxidant activities. Nanoscale Research Letters, 12.

Rajeshkumar, S., & Rinitha, G. (2018). Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using Novel Persea americana seeds. OpenNano, 3, 18–27.

Nasrollahzadeh, M., Ghorbannezhad, F., Issaabadi, Z., & Sajadi, S. M. (2019). Recent Developments in the biosynthesis of Cu-based recyclable nanocatalysts using plant extracts and their application in the chemical reactions. Chemical Record, 19(2), 601–643.

Hasheminya, S. M., & Dehghannya, J. (2020). Green Synthesis and characterization of copper nanoparticles using Eryngium caucasicum Trautv aqueous extracts and its antioxidant and antimicrobial properties. Particulate Science and Technology, 38(8), 1019–1026.

Dewi, K. T. A., Kartini, Sukweenadhi, J., & Avanti, C. (2019). Karakter fisik dan aktivitas antibakteri nanopartikel plantago_Compressed. Pharmaceutical Sciences and Research , 6(2), 669–680.

Sutoyo, S., Tukiran, & Khotijah, S. (2021). Antioxydant activity of the silver nanoparticles (AgNPs) synthesized using Nephrolepisradicans extract as bioreductor. Journal of Physics: Conference Series, 1747(1).

Bezza, F. A., Tichapondwa, S. M., & Chirwa, E. M. N. (2020). Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Scientific Reports, 10(1), 1–18.

Khodashenas, B., & Ghorbani, H. R. (2019). Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry, 12(8), 1823–1838.

Sugiyarti, R., Wisnuwardhani, H. A., & Rusdi, B. (2021). Kajian pustaka sintesis nanopartikel tembaga menggunakan ekstrak tanaman sebagai bioreduktor dan aplikasinya sebagai antibakteri. Prosiding Farmasi, 809–815.

Author Biographies

Fifin Setiani, Universitas Negeri Surabaya

Suyatno Suyatno, Universitas Negeri Surabaya

License

Copyright (c) 2024 Fifin Setiani, Suyatno Suyatno

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.