Antioxidant Potential of Jicama (Pachyrhizus erosus) Extract Fermented by Lactobacillus plantarum B1765


Ardika Prasetya Aji , Prima Retno Wikandari






Vol. 19 No. 1 (2024): January 2024


Antioxidant Activity; Fermentation; Jicama extract; Lactobacillus plantarum B1765; Total Phenolic Content



How to Cite

Aji, A. P., & Wikandari, P. R. (2024). Antioxidant Potential of Jicama (Pachyrhizus erosus) Extract Fermented by Lactobacillus plantarum B1765. Jurnal Pijar Mipa, 19(1), 162–167.


Download data is not yet available.


Metrics Loading ...


Jicama is a source of phenolic compounds that function as antioxidants. However, the presence of polyphenol oxidase and naturally bound phenolic compounds limits its antioxidant potential. Fermentation is one method to enhance the antioxidant potential of jicama. This study investigates the growth of lactic acid bacteria (LAB), pH, total titratable acidity (TTA), total phenolic content (TPC), and antioxidant activity of jicama extract (Pachyrhizus erosus) using L. plantarum B1765 as a starter culture which was fermented for 2, 12, 24, and 36 hours at 37°C. Total LAB is measured using the whole plate count technique, pH using a pH meter, TTA by acid-base titration, TPC using the Folin-Ciocalteu method, and antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method represented by IC50. The fermentation duration of jicama extract increased the growth of LAB to 108 CFU/mL and reached its optimum at 12 hours. However, reducing pH, increasing TTA to 0.223%, increasing TPC, and antioxidant activity still occur up to 36 hours of fermentation. Antioxidant activity was classified as vital. Duration of fermentation increased the growth of total LAB until the defined time, secreted β-glucosidase and inulinase enzymes, and also produced acid as their metabolism product, which hydrolyzed the glycoside bond and reduced pH, both act to free phenolic and increased antioxidant activity. This product has met Indonesian National Standards for beverage-fermented types and could be an antioxidant agent.


Maynard & D. N.; O’Hair & S. K. (2003) Vegetables of Tropical Climates | Root Crops of Lowlands. In Encyclopedia of Food Sciences and Nutrition; Caballero, B., Ed.; Elsevier; pp 5965–5970.

Jaiswal & V.; Chauhan & S.; Lee & H. J. (2022) The Bioactivity and Phytochemicals of Pachyrhizus erosus (L.) Urb.: A Multifunctional Underutilized Crop Plant. Antioxidants. December 27, 2022, p 58.

Kumar & C. M.; Singh & S. A. (2015) Bioactive Lignans from Sesame (Sesamum indicum L.): Evaluation of Their Antioxidant and Antibacterial Effects for Food Applications. Journal of Food Science and Technology, 52 (5), 2934–2941.

Aquino-Bolaños & E. N.; Mercado-Silva & E. (2004) Effects of Polyphenol Oxidase and Peroxidase Activity, Phenolics and Lignin Content on the Browning of Cut Jicama. Postharvest Biology and Technology, 33 (3), 275–283.

Pereira & D.; Valentão & P.; Pereira & J.; Andrade & P. (2009) Phenolics: From Chemistry to Biology. Molecules, 14 (6), 2202–2211.

Cartea & M. E.; Francisco & M.; Soengas & P.; Velasco & P. (2010) Phenolic Compounds in Brassica Vegetables. Molecules, 16 (1), 251–280.

Can & Z.; Dincer & B.; Sahin & H.; Baltas & N.; Yildiz & O.; Kolayli & S. (2014) Polyphenol Oxidase Activity and Antioxidant Properties of Yomra Apple (Malus communis L.) from Turkey. Journal of Enzyme Inhibition and Medicinal Chemistry, 29 (6), 829–835.

Zhang & S. (2023) Recent Advances of Polyphenol Oxidases in Plants. Molecules. 2023.

González-Vázquez & M.; Calderón-Domínguez & G.; Mora-Escobedo & R.; Salgado-Cruz & M. P.; Arreguín-Centeno & J. H.; Monterrubio-López & R. (2022) Polysaccharides of Nutritional Interest in Jicama (Pachyrhizus erosus) during Root Development. Food Science and Nutrition, 10 (4), 1146–1158.

Wimala & M.; Retaningtyas & Y.; Wulandari & L. (2015) Inulin Determination of Yam Bean Tuber (Pachyrhizus erosus L.) from Gresik East Java Using TLC Densitometry. Pustaka Kesehatan, 3 (1), 61–65.

(11) Singh & P. K.; Shukla & P. (2012) Molecular Modeling and Docking of Microbial Inulinases Towards Perceptive Enzyme–Substrate Interactions. Indian Journal of Microbiology, 52 (3), 373–380.

Santoso & P.; Maliza & R.; Octavian & R.; Rita & R. S. (2022) Dietary Fiber of Jicama (Pachyrhizus erosus L) Tuber Exerts Hepatoprotective Effect against High-Sugar Drinks in Mice. Journal of HerbMed Pharmacology, 11 (3), 360–366.

Leonard & W.; Zhang & P.; Ying & D.; Adhikari & B.; Fang & Z. (2021) Fermentation Transforms the Phenolic Profiles and Bioactivities of Plant-Based Foods. Biotechnology Advances. Elsevier Inc. 2021, p 107763.

Rokni & Y.; Abouloifa & H.; Bellaouchi & R.; Hasnaoui & I.; Gaamouche & S.; Lamzira & Z.; Salah & R. B. E. N.; Saalaoui & E.; Ghabbour & N.; Asehraou & A. (2021) Characterization of β-Glucosidase of Lactobacillus plantarum FSO1 and Candida pelliculosa L18 Isolated from Traditional Fermented Green Olive. Journal of Genetic Engineering and Biotechnology, 19 (1), 117.

Zhao & Y. S.; Eweys & A. S.; Zhang & J. Y.; Zhu & Y.; Bai & J.; Darwesh & O. M.; Zhang & H. B.; Xiao & X. (2021) Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants, 10 (12).

Tsao & R. (2010) Chemistry and Biochemistry of Dietary Polyphenols, Second Edi.; Academ; Vol. 2.

Chen & W.; Zhu & J.; Niu & H.; Song & Y.; Zhang & W.; Chen & H.; Chen & W. (2018) Composition and Characteristics of Yam Juice Fermented by Lactobacillus plantarum and Streptococcus thermophilus. International Journal of Food Engineering, 14 (11–12), 1–16.

Nabila & L.; Wikandari & P. R. (2018) Activity of Inulinase Enzyme from Lactobacillus plantarum B1765. UNESA Journal of Chemistry, 7 (2), 44–47.

Huda & M.; Wikandari & P. R. (2016) Determination of β-Glucosidase Activity in Fermentation Extract Soya with Starter Culture Lactobacillus plantarum B1765. UNESA Journal of Chemistry, 5 (2), 83–88.

Wikandari & P. R.; Marsono & Y.; Rahayu & E. S.; Teknologi & J.; Pertanian & H.; Pertanian & F. T.; Mada & U. G.; No & J. F. (2012) Potency of Lactic Acid Bacteria Isolated from Bekasam as Angiotensin Converting Enzyme Inhibitor Producing- Bacteria in Fermentation of “Bekasam-Like” Product. Agritech, 32 (3), 258–264.

Wijayanti & A. A.; Wikandari & P. R. (2023) Potency of Fermented Jicama Extract Cultured with Lactobacillus plantarum B1765 for Producing Short Chain Fatty Acid. Jurnal Pijar Mipa, 18 (5), 822–828.

Nahdiyah & T. A.; Wikandari & P. R. (2022) The Effect of Fermentation Time on the Quality of Probiotic Products from Jackfruit Seed Extract with Lactobacillus plantarum B1765 as the Starter Culture Bacteria. International Journal of Progressive Sciences and Technologies (IJPSAT), 33 (1), 456–463.

Soetan; Olugboyega & K.; Ojo & C.; Olayele & K. (2018) Comparative in Vitro Antioxidant Activities of Six Accessions of African Yam Beans (Sphenostylis stenocarpa L.). Annals. Food Science and Technology, 19 (3).

Suwarni & E.; Cahyadi & K. D. (2016) Free-Radical Scavenging Activity of Ethanol Extract of Kecombrang Flowers (Etlingera elatior) with the DPPH Method. Jurnal Ilmiah Medicamento, 2 (2), 39–46.

Llorens & J. M. N.; Tormo & A.; Martínez-García & E. (2010) Stationary Phase in Gram-Negative Bacteria. FEMS Microbiology Reviews. July 2010, pp 476–495.

Rafsanjani & E. R. M.; Wikandari & P. R. (2017) The Effect Fermentation Time of Lactobacillus plantarum B1765 Lactic Acid Bacteria to the Yacon Root (Smallanthus sonchifolius) Pickle. UNESA Journal of Chemistry, 6 (2), 76–80.

Junaidi & A.; Wikandari & P. R. (2020) Effect of Fermentation Time Of Purple Sweet Potato Extract (Ipomoea Batatas) with Lactobacillus plantarum B1765 on the Quality of Fermented Beverage. UNESA Journal of Chemistry, 9 (1), 77–82.

Rizka Bella Andriani; Prima Retno Wikandari. (2022) The Effect of Fermentation Time on the Product Quality of Purple Sweet Potato (Ipomea batatas) Probiotic Ice Cream with Starter Culture of Lactobacillus plantarum B1765. World Journal of Advanced Research and Reviews, 15 (1), 001–009.

Puspitasari & K. N.; Wikandari & P. R. (2016) Potention of Lactobacillus plantarum B1765 to Producing SCFA in the Fermentation Process of Yakon (Smallanthus sonchifolius) Root Pickles. In Proceedings of the National Chemistry Seminar, Universitas Negeri Surabaya.; pp 56–60.

Uzunova & K.; Vassileva & A.; Kambourova & M.; Ivanova & V.; Spasova & D.; Mandeva & R.; Derekova & A.; Tonkova & A. (2001) Production and Properties of a Bacterial Thermostable Exo-Inulinase. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 56 (11–12), 1022–1028.

Mahapatra & S.; Vickram & A. S.; Sridharan & T. B.; Parameswari & R.; Pathy & M. R. (2016) Screening, Production, Optimization and Characterization of β-Glucosidase Using Microbes from Shellfish Waste. 3 Biotech, 6 (2), 1–10.

Sohail & M.; Siddiqi & R.; Ahmad & A.; Khan & S. A. (2009) Cellulase Production from Aspergillus niger MS82: Effect of Temperature and pH. New Biotechnology, 25 (6), 437–441.

Dordević & T. M.; Šiler-Marinković & S. S.; Dimitrijević-Branković & S. I. (2010) Effect of Fermentation on Antioxidant Properties of Some Cereals and Pseudo Cereals. Food Chemistry, 119 (3), 957–963.

Hur & S. J.; Lee & S. Y.; Kim & Y.-C.; Choi & I.; Kim & G.-B. (2014) Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chemistry, 160, 346–356.

Landete & J. M.; Hernández & T.; Robredo & S.; Dueñas & M.; De Las Rivas & B.; Estrella & I.; Muñoz & R. (2015) Effect of Soaking and Fermentation on Content of Phenolic Compounds of Soybean (Glycine max Cv. Merit) and Mung Beans (Vigna radiata [L] Wilczek). International Journal of Food Sciences and Nutrition, 66 (2), 203–209.

Xiao & Y.; Xing & G.; Rui & X.; Li & W.; Chen & X.; Jiang & M.; Dong & M. (2014) Enhancement of the Antioxidant Capacity of Chickpeas by Solid State Fermentation with Cordyceps Militaris SN-18. Journal of Functional Foods, 10, 210–222.

Wikandari & P. R.; Yuanita & L.; Herdyastuti & N.; Bimo & H. J.; Juniariani & R. E.; Cahyaningtyas & F. D. (2020) Antioxidant Properties of Single Garlic (Allium sativum) Pickle. Digital Press Life Sciences, 2, 00006.

Samruan & W.; Oonsivilai & A.; Oonsivilai & R. (2012) Soybean and Fermented Soybean Extract Antioxidant Activities. International Journal of Biological, Agricultural, Food and Biotechnological Enginerring, 6 (12), 1134–1137.

Melini & F.; Melini & V. (2021) Impact of Fermentation on Phenolic Compounds and Antioxidant Capacity of Quinoa. Fermentation. 2021.

Badarinath & A. V; Rao & K. M.; Madhu & C.; Chetty & S.; Ramkanth & S.; Rajan & T. V. S.; Gnanaprakash & K. (2010) A Review On In-Vitro Antioxidant Methods: Comparisions, Correlations and Considerations. International Journal of PharmTech Research, 2 (2), 1276–1285.

Author Biographies

Ardika Prasetya Aji, Universitas Negeri Surabaya

Prima Retno Wikandari, Universitas Negeri Surabaya


Copyright (c) 2024 Ardika Prasetya Aji, Prima Retno Wikandari

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.