The Effect of Natural Plant Growth Regulator Concentration of Indian Red Onions on the Growth of Euphorbia (Euphorbia geroldii) Flowers


Dzikra Nasyaya Mahfudhah , Mirwa Adiprahara Anggarani






Vol. 19 No. 2 (2024): March 2024


Euphorbia; Flower Growth; , Indian Red Onion; Natural PGR



How to Cite

Mahfudhah, D. N., & Anggarani, M. A. (2024). The Effect of Natural Plant Growth Regulator Concentration of Indian Red Onions on the Growth of Euphorbia (Euphorbia geroldii) Flowers . Jurnal Pijar Mipa, 19(2), 302–307.


Download data is not yet available.


Metrics Loading ...


The euphorbia flower (euphorbia geroldii), widely used by the public as an ornamental plant because of its visual beauty, has an aesthetic function and health benefits that still need to be researched. The euphorbia genus has antimicrobial, antioxidant, and antidiabetic activity, which comes from its abundant terpenoid compounds, flavonoids, and other phytochemical compounds. Due to these high benefits, optimization of cultivation is carried out by adding phytohormones, better known as Growth Regulatory Regulator (PGR), further to increase the quality and quantity of euphorbia flowers so that the economic value will also increase in the realm of the agricultural industry. This research aims to analyze the effect of the natural PGR concentration of red onions (Allium cepa L.) on the growth of euphorbia flowers, including the parameters of the number of flowers on one tree, the time the buds appear, and the duration of flower survival. The research method used was quantitative experimental using a one-factor Randomized Block Design (RBD), namely testing the effect of several variations in PGR concentration (0%, 1%, 3%, 5%, 7%, and 10%) and statistically analyzed using SPSS. The results of the research show that all variations in PGR concentration have a positive effect on all parameters, where the PGR concentration of 10% indicates the highest increase, including the average number of flowers on one tree, which is 13 flowers, the average time for buds to appear is 2.5 times in one week. The average duration of flower survival is 139.5 hours. It can be concluded that the natural PGR of red onions has a positive effect on all parameters, with the highest results shown at a concentration variation of 10%.


Gunawan, F. I., Mulyana, F. W., Supriyatna, A., & Biologi, P. S. (2023). Inventarisasi Dan Analisis Jenis Tumbuhan Famili Euphorbiaceae Dan Sebarannya Di Desa Cipeundeuy, Kecamatan Bantarujeg, Kabupaten. Jurnal Riset Rumpun Ilmu Tanaman, 2(1).

Adhil, Iqbal, M., & Ramadani. (2019). Kajian Etnobotani Suku Euphorbiaceae yang Dimanfaatkan oleh Suku Pekurehua di Desa Wuasa dan Kaduwaa Kecamatan Lore Utara Kabupaten Poso Sulawesi Tengah. Natural Science: Journal of Science and Technology ISSN, 8(1), 51–60.

Divya, Kt., Dipen, Ks., Kirtan, Ps., Ashish, Ps., & Avinash, Ks. (2016). Extract of Euphorbia milii flower: A natural indicator in acid-base titration. Journal of Integrated Health Sciences, 4(2), 2.

Toudert, N., Zakkad, F., Dadda, N., Djilani, A., Dicko, A., & Djilani, S. E. (2021). Phytochemical analysis of bioactive extracts and seed oil of three euphorbia species from Algerian flora by lc-ms and gc-ms. Indonesian Journal of Chemistry, 21(3), 546–553.

Tanjung, T. Y., & Darmansyah. (2021). Pengaruh Penggunaan ZPT Alami dan Buatan terhadap Pertumbuhan Setek Tanaman Delima (Punica granatum L.). Jurnal Hortuscoler, 2(1), 6–13.

Abror, M., & Noviyanti, D. D. (2019). Pengaruh Beberapa Jenis ZPT terhadap Pertumbuhan Stek Batang Murbei (Morus alba L.). Jurnal Nabatia, 7(1), 19–28.

Ramadhani, S. (2021). Uji Beberapa Jenis dan Konsentrasi ZPT Alami terhadap Pertumbuhan Setek Nilam (Pogostemon cablin Benth). In Universitas Islam Riau. Universitas Islam Riau.

Nababan, R. S., Gustianty, L. R., Efendi, E., Kailan, S., Nova, V., Caisim, S. S., & Tosakan, V. (2017). Pengaruh Aplikasi ZPT Organik terhadap Pertumbuhan dan Produksi Berbagai Varietas Sawi Hijau ( Pai-Tsai ) ( Brassica juncea L .). Agricultural Research Journal, 14(2), 124–133.

Sumiati, E., & Sumarni, N. (2006). Pengaruh Kultivar dan Ukuran Umbi Bibit Bawang Bombay Introduksi terhadap Pertumbuhan, Pembungaan, dan Produksi Benih. Jurnal Hortikultura, 16(1), 12–20.

Hidayah, L. A., & Anggarani, M. A. (2022). Determination of Total Phenolic, Total Flavonoid, and Antioxidant Activity of India Onion Extract. Indonesian Journal of Chemical Science, 11(2).

Prameswari, S., & Pratomo, B. (2021). Pengaruh Ekstrak Bawang Merah dan Zat Pengatur Tumbuh Auksin terhadap Pertumbuhan Setek Mucuna bracteata D.C. Agrinula, 4(2), 130–138.

Ogunyale, O. G., Fawibe, O. O., Ajiboye, A. A., & Agboola, D. A. (2014). A Review of Plant Growth Substances: Their Forms, Structures, Synthesis and Functions. J. Adv. Lab. Res. Biol., 5(4), 152–168.

Goldberg-Moeller, R., Shalom, L., Shlizerman, L., Samuels, S., Zur, N., Ophir, R., Blumwald, E., & Sadka, A. (2013). Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds. Plant Science, 198, 46–57.

Dalili Sharfina, F., & Yuliani. (2023). Pemberian berbagai Konsentrasi Hormon Giberelin terhadap Pertumbuhan dan Pembungaan Tanaman Kenikir (Cosmos sp.). Jurnal LenteraBio, 12(3), 396–404.

Suputra, I. M. W., Wijaya, I. M. A. S., & Tika, I. W. (2015). Kajian Frekuensi dan Lama Pemaparan Medan Elektromagnetik pada Fase Generatif terhadap Produksi dan Kualitas Bunga Krisan (Crhysantemum). Jurnal BETA (Biosistem Dan Teknik Pertanian), 3(2), 1–12.

Wang, Y., Burgess, S. J., de Becker, E. M., & Long, S. P. (2020). Photosynthesis in the fleeting shadows: an overlooked opportunity for increasing crop productivity? Plant Journal, 101(4), 874–884.

Guest, D. I. (2016). Plant Pathology, Principles. In Encyclopedia of Applied Plant Sciences (Second Edi, Vol. 3). Elsevier.

Maulana, A. (2020). Hobi Koleksi Tanaman Hias, Waspadai Hama dan Penyakitnya.

Hernández-García, J., Briones-Moreno, A., & Blázquez, M. A. (2021). Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in Cell and Developmental Biology, 109(March), 46–54.

Jeyakumar, J. M. J., Ali, A., Wang, W. M., & Thiruvengadam, M. (2020). Characterizing the role of the miR156-SPL network in plant development and stress response. Plants, 9(9), 1–15.

Zhang, S., Gottschalk, C., & Van Nocker, S. (2019). Genetic mechanisms in the repression of flowering by gibberellins in apple (Malus x domestica Borkh.). BMC Genomics, 20(747), 1–15.

Shalit-Kaneh, A., Eviatar-Ribak, T., Horev, G., Suss, N., Aloni, R., Eshed, Y., & Lifschitz, E. (2019). The flowering hormone florigen accelerates secondary cell wall biogenesis to harmonize vascular maturation with reproductive development. Proceedings of the National Academy of Sciences of the United States of America, 116(32), 16127–16136.

Tsuji, H. (2017). Molecular function of florigen. Breeding Science, 67(4), 327–332.

Poethig, R. S. (2014). Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol., 105(6), 125–152.

Gao, L., Lyu, T., & Lyu, Y. (2022). Genome-Wide Analysis of the SPL Gene Family and Expression Analysis during Flowering Induction in Prunus × yedoensis' Somei-yoshino.' International Journal of Molecular Sciences, 23(17).

Andrés, F., Romera-Branchat, M., Martínez-Gallegos, R., Patel, V., Schneeberger, K., Jang, S., Altmüller, J., Nürnberg, P., & Coupland, G. (2015). Floral induction in Arabidopsis by flowering locus t requires direct repression of blade-on-petiole genes by the homeodomain protein pennywise. Plant Physiology, 169(3), 2187–2199.

Bauerle, W. L. (2022). Gibberellin A3 induced flowering intensification in Humulus lupulus L. : Synchronizing vegetative phase change and photoperiod induction. Elsevier, 1–22.

Yang, Q., Cong, T., Yao, Y., Cheng, T., Yuan, C., & Zhang, Q. (2023). KNOX Genes Were Involved in Regulating Axillary Bud Formation of Chrysanthemum × morifolium. International Journal of Molecular Sciences, 24(8), 1–18.

Zhang, R., Min, Y., Holappa, L. D., Walcher-Chevillet, C. L., Duan, X., Donaldson, E., Kong, H., & Kramer, E. M. (2020). A role for the Auxin Response Factors ARF6 and ARF8 homologs in petal spur elongation and nectary maturation in Aquilegia. New Phytologist, 227(5), 1392–1405.

Chung, Y., Zhu, Y., Wu, M. F., Simonini, S., Kuhn, A., Armenta-Medina, A., Jin, R., Østergaard, L., Gillmor, C. S., & Wagner, D. (2019). Auxin Response Factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS. Nature Communications, 10(1).

Lavy, M., & Estelle, M. (2016). Mechanisms of auxin signaling. Development (Cambridge), 143(18), 3226–3229.

Leyser, O. (2018). Auxin signaling. Plant Physiology, 176(1), 465–479.

Stortenbeker, N., & Bemer, M. (2019). The SAUR gene family: The plant's toolbox for adaptation of growth and development. Journal of Experimental Botany, 70(1), 17–27.

Gan, Z., Fei, L., Shan, N., Fu, Y., & Chen, J. (2019). Identification and expression analysis of gretchen hagen 3 (Gh3) in kiwifruit (actinidia chinensis) during postharvest process. Plants, 8(11), 1–13.

Gomes, G. L. B., & Scortecci, K. C. (2021). Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biology, 23(6), 894–904.

Sofwan, N., Faelasofa, O., Triatmoko, A. H., & Iftitah, S. N. (2018). Optimalisasi ZPT (Zat Pengatur Tumbuh) Alami Ekstrak Bawang Merah (Allium cepa Fa. Ascalonicum) sebagai Pemacu Pertumbuhan Akar Stek Tanaman Buah Tin (Ficus carica). Jurnal Ilmu Pertanian Tropika Dan Subtropika, 3(2), 46–48.

Salsabila, R., Karno, & Purbajanti, E. (2021). Respon Pertumbuhan Stek Soka Mini (Ixora coccinea) Terhadap Konsentrasi Pemberian Dan Lama Perendaman ZPT Alami Ekstrak Bawang Merah. J. Agro Complex, 5(1), 57–65.

Paelongan, A. H., Malau, K. M., & Semahu, L. H. (2023). Pengaruh Ekstrak Bawang Merah (Allium cepa L.) sebagai Zat Pengatur Tumbuh pada Benih Kakao (Theobroma cacao L.). Jurnal Agro Industri Perkebunan, 11(3), 185–196.

Fadhil, I., Rahayu, T., & Hayati, A. (2018). Pengaruh Kulit Bawang Merah (Allium cepa L.) Sebagai Zpt Alami Terhadap Pembentukan Akar Stek Pucuk Tanaman Krisan (Chrysanthemum sp). Jurnal SAINS ALAMI (Known Nature), 1(1), 34–38.

Sembiring, E. K. D. B. S., Sulistyaningsih, E., & Shintiavira, H. (2021). Pengaruh Berbagai Konsentrasi Giberelin (GA 3) terhadap Pertumbuhan dan Kualitas Hasil Bunga Krisan (Chrysanthemum morifolium Ramat.) di Dataran Medium. Vegetalika, 10(1), 44–55.

Hidayati, A. R., Nurlaelih, E. E., & Heddy, S. (2019). Pengaruh Pemberian Hormon Giberelin (GA3) terhadap Pembungaan Tiga Jenis Tanaman Soka (Ixora coccinea L.). Jurnal Produksi Tanaman, 7(2), 240–247.

Author Biographies

Dzikra Nasyaya Mahfudhah, Chemistry Department, Universitas Negeri Surabaya

Mirwa Adiprahara Anggarani, Chemistry Department, Universitas Negeri Surabaya


Copyright (c) 2024 Dzikra Nasyaya Mahfudhah, Mirwa Adiprahara Anggarani

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).