The Effect of Fermented Jicama Extract with Lactobacillus plantarum B1765 as the Culture Starter on the Product Quality and Flavonoid Contents
DOI:
10.29303/jpm.v19i2.6467Published:
2024-03-28Issue:
Vol. 19 No. 2 (2024): March 2024Keywords:
Fermentation; Jicama Extract; Lactobacillus plantarum B1765; Product Quality; Total Flavonoid ContentArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Jicama (Pachyrhizus erosus) is a functional food containing phenolic compounds, with the main compounds being flavonoids. However, the presence of polyphenol oxidase and the structure of flavonoid compounds are still bound in the form of glycosides, so the bioactivity of jicama is not maximized. This study aims to determine the effects of jicama extract fermentation on product quality and increased flavonoid content in jicama. Fermentation was performed for 0, 12, 24, and 36 hours with 5% (v/v) of the starter culture, Lactobacillus plantarum B1765, at 37ºC. The result showed that fermentation times could increase Total Lactic Acid Bacteria (LAB), Total Tertitrable Acid (TTA), Total Phenolic Content (TPC), and Total Flavonoid Content (TFC). It also influenced a decrease in pH. The total LAB count was determined using the Total Plate Count method, the Total Tertitrable Acid was determined using acid-base titration, and the pH was determined using a pH meter. Total Phenolic Content was measured using the Folin-Ciocalteu method, and Total Flavonoid Content was measured using AlCl3 and potassium acetate. The analysis of the data revealed that jicama extract fermented optimum after 24 hours, with a total LAB count of 9.7x107±0.31 CFU/mL, a pH value of 4.21±0.22, a TTA of 0.376±0.025%, but TPC and TFC still increasing until 24 hours of fermentation to 16.22±0.312 mg GAE/g, and of 29.01±0.641 mg QE/g respectively. Fermentation of jicama extract with Lactobacillus plantarum B1765 increased total phenolic and total flavonoid contents and could be used as a functional food product.
References
Temple, NJ. (2022). A Rational Definition for Functional Foods: A perspective. Front. Nutr, 9:957516.
Slavin, J.L., & Lloyd, B. (2012). Health Benefits of Fruits and Vegetables. Advances in Nutrition, 3, 506-516.
Hill, C., Guarner, F., Reid, G. et al. (2014). The International Scientific Association for Probiotics and Prebiotics Consensus Statement on The Scope and Appropriate Use of The Term Probiotic. Nat Rev Gastroenterol Hepatol 11, 506–514
Lukitaningsih, E., (2009). The Exploration of Whitening and Sun Screening Compounds in Bengkoang roots (Pachyrhizus erosus). Dissertation, 1-28
Phrutivorapongkul A, Lipipun V, Ruangrungsi N, Watanabe T, Ishikawa T. (2002). Studies on The Constituents of Seeds of Pachyrrhizus erosus and Their Anti Herpes Simplex Virus (HSV) Activities. Chem Pharm Bull (Tokyo). 50(4):534-7
Markham, K.R. (1988). Cara Mengidentifikasi Flavonoid. Penerjemah Kosasih Padmawinata.Bandung: ITB.
Pourmorad, F., Hosseinimehr, S.J. and Shahabimajd, N., (2006). Antioxidant Activity, Phenol and Flavonoid Contents of Some Selected Iranian Medicinal Plants. African journal of biotechnology, 5(11). pp 1142-1145
Widodo, Ningsih, and Aprilia. (2010). Aktivitas Antibakteri dan Penyembuhan Luka Fraksi-Fraksi Ekstrak Etanol Daun Kamboja (Plumeria acuminata Ait) pada Kulit Kelinci yang Diinfeksi Staphylococcus aureus. Jurnal Farmasi Indonesia, 7(2): 73-77.
Liu C, Ogbonnaya FC, Bürstmayr H. (2015). Resistance to Fusarium Crown Rot in Wheat and Barley: A Review. Plant Breeding 134(4):365–372
Eumkeb, G., Sakdarat, S., & Siriwong, S. (2010). Reversing Beta‐Lactam Antibiotic Resistance Of Staphylococcus aureus With Galangin From Alpinia Officinarum Hance And Synergism With Ceftazidime. Phytomedicine, 18(1), 40–45.
Elia, N., Bolaños, A., & Silva, E. M. (2004). Effects of Polyphenol Oxidase and Peroxidase Activity, Phenolics and Lignin Content on The Browning of Cut Jicama. Postharvest Biology and Technology, 33(3), 275–283.
Nirmal, Nilesh & Benjakul, Soottawat & Ahmad, Mehraj & Arfat, Yasir. (2014). Undesirable Enzymatic Browning in Crustaceans: Causative Effects and Its Inhibition by Phenolic Compounds. Critical reviews in food science and nutrition.
Hari, P. D., Murtius, W.S., and Rahmi, D. I. (2017). Studi Karakteristik Hasil Fermentasi Olahan Bengkoang (Pachyrizus erosus) Menggunakan Berbagai Konsentrasi Ragi. Jurnal Teknologi Pertanian Andalas, 21(2), ISSN 1410-1920, EISSN 2579-4019
Can, Z., Dincer, B., Sahin, H., Baltas, N., Yildiz, O., and Kolayli, S. (2014). Polyphenol Oxidase Activity and Antioxidant Properties of Yomra Apple (Malus communis L.) from Turkey, Journal of Enzyme Inhibition and Medicinal Chemistry, 29:6, 829-835,
Nurdjannah, N., & Hoerudin. (2008). Effect of Soaking in Organic Acids and Drying Methods on The Quality of Dried Green Pepper. Bul. Littro, XIX(2), 181–196.
Tsao, R. (2010). Chemistry and Biochemistry of Dietary Polyphenols. Nutrients, 2(12), 1231–1246.
Ding, W.K.; Shah, N.P. (2010). Enhancing the Biotransformation of Isoflavones in Soy milk Supplemented with Lactose Using Probiotic Bacteria during Extended Fermentation. J. Food Sci. 75: 140–149.
Salar, R.K.; Certik, M.; Brezova, V. (2012). Modulation of Phenolic Content and Antioxidant Activity of Maize by Solid State Fermentation with Thamnidium Elegans CCF 1456. Biotechnol. Bioprocess Eng, 17: 109–116.
Ghabbour N, Rokni Y, Abouloifa H, Bellaouchi R, Chihib N-E, Salah RB, Lamzira Z, Saalaoui E, Asehraou A. (2020). In vitro Biodegradation of Oleuropein by Lactobacillus plantarum FSO 175 in Stress Conditions (pH, NaCl and glucose). J Microbiol Biotechnol Food Sci 9(4):769–773.
Sestelo ABF, Poza M, Villa TG. (2004). β-Glucosidase Activity in a Lactobacillus plantarum Wine Strain. World J Microbiol Biotechnol 20:633.
Huda, M., & Wikandari, dan P. R. (2016). Determination of β-Glukosidase Activity in Fermentation Extract Soya With Starter Culture Lactobacillus plantarum B1765. UNESA Journal of Chemistry, 5(2), 83–88.
AOAC. (2005). Official Methods of Analysis of the Association of Analytical Chemist. Association of Official Analytical Chemist, Inc.
Mailoa, M. N., Tapotubun, A. M., Matrutty, T. E.A.A., (2017), IOP Conf. Series: Earth and Environmental Science, 89
Myo, H., Nantarat, N., & Khat-Udomkiri, N. (2021). Changes in Bioactive Compounds of Coffee Pulp through Fermentation-Based Biotransformation Using Lactobacillus plantarum TISTR 543 and Its Antioxidant Activities. Fermentation, 7(4).
Stankovic, M.S., (2011). Total Phenolic Content, Flavonoid Concentration and Antioxidant Activity of Marrubium peregrinum L. extracts. Kragujevac J Sci, 332011
Febricia, G. P., Nocianitri, K. A., & Pratiwi, I. D. P. K. (2020). The Effect of Fermentation Time on Characteristic of Tamarillo Juice (Solanum betaceum Cav.) Probiotic Drink With Lactobacillus sp. F213. Jurnal Ilmu dan Teknologi Pangan (ITEPA), 9(2): 170.
Nurjanah, N. F., Fauziyah, R. N., & Rosmana, D. (2020). Yam Bean Velva Dragon Products Based on Red Dragon Fruit and Bengkuang As an Alternative of Snack With Inulin and Antosianin Fiber Sources. Jurnal Riset Kesehatan Poltekkes Depkes Bandung, 12(1), 149–169.
Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H. R., Shakeel, A., Ansari, A., & Niazi, S. (2016). Inulin: Properties, Health Benefits and Food Applications. Carbohydrate Polymers, 147: 444–454.
Putri, C. perdana, Fevria, R., Chatri, M., & Achyar, A. (2020). The Effect of Sugar Addition on Fermentation Time of Sauerkraut from Coles (Brassica Oleracea L.). Symbiotic: Journal of Biological Education and Science, 1(2), 70–75.
Rafsanjani, E. R. M., & Wikandari, P. R. (2017). The Effect Fermentation Time of Lactobacillus plantarum B1765 Lactic Acid Bacteria to The Yacon Root (Smallanthus Sonchifolius) Pickle. UNESA Journal of Chemistry, 6(2), 76–80.
Natasya, N. W. A., & Wikandari, P. R. (2022). Effect of Fermentation Time of Gembili (Dioscorea esculenta L.) Tuber with Lactobacilus plantarum B1765 Starter Culture on Fructooligosaccharide Production. Unesa Journal of Chemistry, 11(2), 88–96.
Febriana, E., & Wikandari, P. R. (2022). Effect of Fermentation Duration on the Characteristics of Tomato Juice Probiotic Drink with Starter Culture of L. plantarum B1765. UNESA Journal of Chemistry, 11(2), 123–135.
IFS. (2018). Standard for Fermented Milks. World Health Organization.
Lukitaningsih, E. (2014). Bioactive Compounds in Bengkoang (Pachyrhizus erosus) as Antiocidant and Tyrosinase Inhibiting Agents. Indonesian Journal of Pharmacy, 25(2), 68.
Nazarni, R., Purnama, D., Umar, S., & Eni, H. (2016). The Effect of Fermentation on Total Phenolic, Flavonoid and Tannin Content and Its Relation to Antibacterial Activity in Jaruk Tigarun (Crataeva nurvala, Buch HAM). International Food Research Journal, 23(1), 309–315.
Cheng, K. C., Wu, J. Y., Lin, J. T., & Liu, W. H. (2013). Enhancements of Isoflavone Aglycones, Total Phenolic Content, and Antioxidant Activity of Black Soybean by Solid-state Fermentation with Rhizopus spp. European Food Research and Technology, 236(6), 1107–1113.
Leonard, W., Zhang, P., Ying, D., Adhikari, B., & Fang, Z. (2021). Fermentation Transforms the Phenolic Profiles and Bioactivities of Plant-based Foods. Biotechnology Advances, 49(October 2020), 107763.
Soetan, Olugboyega, K., Ojo, C., & Olayele, K. (2018). Comparative in Vitro Antioxidant Activities of Six Accessions of African Yam Beans (Sphenostylis Stenocarpa L.). Annals. Food Science and Technology, 19(3).
Chen, W., Zhu, J., Niu, H., Song, Y., Zhang, W., Chen, H. & Chen, W. (2018). Composition and Characteristics of Yam Juice Fermented by Lactobacillus plantarum and Streptococcus thermophilus. International Journal of Food Engineering, 14(11-12), 20180123.
Yuksekdag, Z., Cinar Acar, B., Aslim, B., & Tukenmez, U. (2018). β-Glucosidase Activity and Bioconversion of Isoflavone Glycosides to Aglycones by Potential Probiotic Bacteria. International Journal of Food Properties, 20(3), S2878–S2886.
Lodha, D., Das, S., & Hati, S. (2021). Antioxidant Activity, Total Phenolic Content and Biotransformation of Isoflavones During Soy Lactic-Fermentations. Journal of Food Processing and Preservation, 45(6), 1–9.
Hunaefi, D., Gruda, N., Riedel, H., Akumo, D. N., Saw, N. M. M. T., & Smetanska, I. (2013). Improvement of Antioxidant Activities in Red Cabbage Sprouts by Lactic Acid Bacterial Fermentation. Food Biotechnology, 27(4), 279–302.
Svensson, L., Sekwati-Monang, B., Lutz, D. L., Schieber, R., & Gänzle, M. G. (2010). Phenolic Acids and Flavonoids in Nonfermented and Fermented Red Sorghum (Sorghum bicolor (L.) Moench). Journal of Agricultural and Food Chemistry, 58(16), 9214–9220.
Adebo, O. A., Njobeh, P. B., Mulaba-Bafubiandi, A. F., Adebiyi, J. A., Desobgo, Z. S. C., & Kayitesi, E. (2018). Optimization of Fermentation Conditions for Ting Production Using Response Surface Methodology. Journal of Food Processing and Preservation, 42(1), 1–10.
Ademiluyi, A.O. and Oboh, G. (2011). Antioxidant properties of condiment produced from fermented bambara groundnut (Vigna subterranean L. Verdc). Journal of Food Biochemistry 35: 1145 – 1160.
Adetuyi, F.O., & Ibrahim, T.A. (2014). Effect of Fermentation Time on the Phenolic, Flavonoid and Vitamin C Contents and Antioxidant Activities of Okra (Abelmoschus esculentus) Seeds. Nigerian Food Journal, 32(2), 128-137.
Dwiputri, M. C., & Feroniasanti, Y.M. Lauda. (2019). Effect of Fermentation to Total Titrable Acids, Flavonoid and Antioxidant Activity of Butterfly Pea Kombucha. J. Phys.: Conf. Ser., 1241012014.
Apridamayanti, P., & Sari, Rafika. (2024). Tea Fermentation of A. malacencis with Lactobacillus plantarum as a starter: In vitro study as a functional drink. Indonesian Journal of Pharmaceutical Science and Technology 11(1): 126-139.
Hur, S. J., Lee, S. Y., Kim, Y. C., Choi, I. and Kim, G.B. (2014). Effect of Fermentation on The Antioxidant Activity in Plant-Based Foods. Food Chemistry 160: 346–356.
Dueñas, M., Fernández, D., Hernández, T., Estrella, I. and Muñoz, R. (2005). Bioactive Phenolic Compounds of Cowpeas (Vigna sinensis L.). Modifications by Fermentation with Natural Microflora and with Lactobacillus plantarum ATCC 14917. Journal Science Food Agriculture 85(2): 297-304.
Karimi, Ehsan & Oskoueian, Ehsan & Hze, R. (2010). Solid State Fermentation Effects on Pistachio Hulls Antioxidant Activities. King Khalid University Research Journal, 15, 260-266.
Author Biographies
Widi Salsabila, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya
Prima Retno Wikandari, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya
License
Copyright (c) 2024 Widi Salsabila, Prima Retno Wikandari
This work is licensed under a Creative Commons Attribution 4.0 International License.
The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.
2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).