Application of the Support Vector Regression Method with the Grid Search Algorithm to Predict Movement Gold Price

Authors

Reni Puspita , Hendra Cipta , Rima Aprilia

DOI:

10.29303/jpm.v19i2.6607

Published:

2024-03-30

Issue:

Vol. 19 No. 2 (2024): March 2024

Keywords:

Gold Price; Prediction; Support Vector Regression

Articles

Downloads

How to Cite

Puspita, R., Cipta, H., & Aprilia, R. (2024). Application of the Support Vector Regression Method with the Grid Search Algorithm to Predict Movement Gold Price. Jurnal Pijar Mipa, 19(2), 380–385. https://doi.org/10.29303/jpm.v19i2.6607

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Gold is an investment with the smallest risk because it can be sold anytime and anywhere. In Indonesia, gold bullion as an investment product is known for its purity level of 99.99%, namely gold bullion produced by PT. Aneka Tambang (Antam) through its Precious Metals business unit. Apart from its pure production, Antam gold bullion is easier to resell anytime and anywhere because it has an official certificate from the international gold standardisation institution, namely LBMA (London Bullion Market Association), to more easily estimate the value of gold bullion when sold. To overcome this, predictions of future gold prices are needed. In this research, one of the prediction methods is Support Vector Regression with the Grid Search Algorithm. In this method this method will be used to predict the price of gold, which aims to predict and find out the price of gold one year in the future to produce a level accuracy (MAPE) of 5.43% and the prediction of gold prices increasing from 2023-June-01 to 2024-March-23 while experiencing a decline starting in 2024-March-24. Research by examining the relationship between variables, which emphasises data consisting of numbers so that it is analysed based on statistical procedures using the Support Vector Regression method with data sourced from the daily price of gold bullion through PT. Gallery 24 Pawnshops, North Sumatra. Where this method is very well used in predicting by choosing the best kernel used is the linear kernel because, from these three kernels, the best hyperparameters were obtained for predicting gold price movements using a linear kernel with a division for training and testing data of 60: 40. The MAPE value obtained was 5.43.

References

Mas Rahmah, S. H., & MH, L. M. (2019). Hukum Pasar Modal. Prenada Media.

Guntur, M., Santony, J., & Yuhandri, Y. (2018). Prediksi harga emas dengan menggunakan metode Naïve Bayes dalam investasi untuk meminimalisasi resiko. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 2(1), 354-360.

Komariah, S. S., Lubis, R. S., & Cipta, H. (2021). Analisis Pengendalian Persediaan Sepeda Motor Honda Dengan Penerapan Klasifikasi Always Better Control Pada Dealer Putra Suryajaya Raya II. Jurnal Sains Matematika Dan Statistika, 7(2), 13-26.

Dewi, S., Nugraha, I., Islami, M. C. P. A., Sari, R. N., & Winursito, Y. C. (2022). Pengendalian Persediaan Material Menggunakan Metode Continuous Review dengan Sistem (r, Q). JUMINTEN, 3(2), 1-12.

Rahmadayanti, C., Rabbani, H., & Rohmawati, A. A. (2018). Model GARCH dengan pendekatan conditional maximum likelihood untuk prediksi harga saham. Indonesia Journal on Computing (Indo-JC), 3(2), 21-28.

Saputra, G. H., Wigena, A. H., & Sartono, B. (2019). Penggunaan support vector regression dalam pemodelan indeks saham syariah indonesia dengan algoritme grid search. Indonesian Journal of Statistics and Its Applications, 3(2), 148-160.

Drajana, I. C. R. (2017). Metode support vector machine dan forward selection prediksi pembayaran pembelian bahan baku kopra. ILKOM Jurnal Ilmiah, 9(2), 116-123.

Musmirani, M., Purnamasari, I., & Suyitno, S. (2021). Penerapan Latent Class Regression Analysis dalam Segmentasi Pasar. EKSPONENSIAL, 11(1), 47-56.

Purnama, D. I. (2020). Peramalan jumlah penumpang datang melalui transportasi udara di Sulawesi Tengah menggunakan Support Vector Regression (SVR). Jurnal Ilmiah Matematika dan Terapan, 17(1).

Chairani, D., Prasetya, N. H., & Cipta, H. (2021). Analisis Pengendalian Persediaan Obat Antibiotik RSU Haji Medan Dengan Menerapkan Metode Always Better Control, Economic Order Quantity, Dan Reorder Point. TIN: Terapan Informatika Nusantara, 1(12), 618-622.

Dewi, K. C., Ciptayani, P. I., Surjono, H. D., & Priyanto, P. (2019). Blended Learning: Konsep dan Implementasi pada Pendidikan Tinggi Vokasi.

Supuwiningsih, N. N., Kusuma, A. S., Pratiwi, E. L., & Pratami, N. W. C. A. (2022). Statistik Forecasting Dalam Sistem Informasi Geografis. Media Sains Indonesia.

Maulana, R., & Kumalasari, D. (2019). Analisis Dan Perbandingan Algoritma Data Mining Dalam Prediksi Harga Saham Ggrm. J. Inform. Kaputama, 3(1), 22-28.

Hendayanti, N. P. N., & Nurhidayati, M. (2020). Perbandingan metode seasonal autoregressive integrated moving average (SARIMA) dengan support vector regression (SVR) dalam memprediksi jumlah kunjungan wisatawan mancanegara ke Bali. Jurnal Varian, 3(2), 149-162.

Putra, A. L., & Kurniawati, A. K. (2021). Analisis Prediksi Harga Saham PT. Astra International Tbk Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) dan Support Vector Regression (SVR): Array. Jurnal Ilmiah Komputasi, 20(3), 417-424.

Pradana, R. S. (2021). Penerapan Analisis Jalur Dalam Mengidentifikasi Penyebab Fluktuasi Harga Cabai Merah Di Kabupaten Aceh Jaya. Jurnal Agrica, 14(1), 20-32.

Arimuko, A., Wibawa, A. S. W., & Firmansyah, A. (2019). Analisis Perbandingan Penentuan Hiposentrum Menggunakan Metode Grid Search, Geiger, dan Random Search: Studi Kasus pada Letusan Gunung Sinabung 2017. DIFFRACTION: Journal for Physics Education and Applied Physics, 1(2), 22-28.

Kusdarwati, H., Effendi, U., & Handoyo, S. (2022). Analisis Deret Waktu Univariat Linier: Teori dan Terapannya dengan Rstudio. Universitas Brawijaya Press.

Pambudi, R. A., Setiawan, B. D., & Wijoyo, S. H. (2018). Implementasi Fuzzy Time Series untuk Memprediksi Jumlah Kemunculan Titik Api. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(11), 4767-4776.

Wu, Y., & He, K. (2018). Group normalisation. In Proceedings of the European conference on computer vision (ECCV) (pp. 3-19).

Author Biographies

Reni Puspita, Program Studi Matematika, Universitas Islam Negeri Sumatera Utara

Hendra Cipta, Mathematic Study Program, Faculty of Science and Technology, North Sumatra State Islamic University

Rima Aprilia, Mathematic Study Program, Faculty of Science and Technology, North Sumatra State Islamic University

License

Copyright (c) 2024 Reni Puspita, Hendra Cipta, Rima Aprilia

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).