Optimization of Polysulfone/Polyethylene Glycol (PSf/PEG) Casted Solution Composition as a Membrane Electrolyte in a Dye-Sensitized Solar Cell (DSSC)
DOI:
10.29303/jpm.v19i3.6610Published:
2024-05-25Issue:
Vol. 19 No. 3 (2024): May 2024Keywords:
DSSC; Membrane Electrolyte; PSf/PEG; StabilityArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Stability is the main challenge in developing electrical energy made from sunlight, namely Dye-Sensitized Solar Cell (DSSC). The DSSC system comprises a photoanode, electrolyte, comparison electrode, and dye sensitizer with a photoelectrochemical working principle. Dye sensitizer and electrolyte are the main components that determine the stability of DSSC, with problems such as solvent evaporation leakage in liquid electrolytes and dye desorption. In overcoming these problems, the polymer electrolyte of Polysulfone/Polyethylene Glycol (PSf/PEG) is a solution to the problem by increasing the mobility of I-/I3- ions in the electrolyte. Polymer composition and porogen (pore formers) affect the ionic conductivity, which impacts the electron flow of the DSSC system. Therefore, this study optimized the composition of PSf/PEG polymer electrolyte, namely 18/0, 17/1, 16/2, 15/3, 14/4, and 13/5. This research was carried out using quantitative methods with data processed in a quantitative descriptive manner to determine the performance of DSSC based on PSf/PEG membrane electrolyte. The wavelength absorption of the dye was characterized using a Spectrophotometer UV-Vis instrument, and the specific wavelength was obtained at 573 nm, which indicates anthocyanin absorption. Electrochemical characterization of the dye using voltammetry yielded a resulting energy bandgap value of 0.5132 eV with the touch plot method. Testing the performance and stability of DSSC, voltage, and current measurements were carried out using a multimeter, and fill factor and efficiency calculations were carried out. The performance of DSSC with liquid electrolytes was 1.66%, while that of DSSC with membrane electrolytes of the best composition (16/2) was 1.38% at 0 hours. In addition, the performance test was carried out at 72 hours of exposure time, resulting in an efficiency of 0.77%, while the DSSC with the best composition of membrane electrolyte (16/2) was 1.11%. This shows a decrease in the efficiency of DSSC with liquid electrolytes by 53.43%, while the membrane electrolyte efficiency of DSSC is 19.33-20.17%.
References
Omar, A., Ali, M. S., & Abd Rahim, N. (2020). Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Solar Energy (Phoenix, Ariz.), 207, 1088–1121.
Setyono, A. E., & Kiono, B. F. T. (2021). Dari Energi Fosil Menuju Energi Terbarukan: Potret Kondisi Minyak dan Gas Bumi Indonesia Tahun 2020 – 2050. Jurnal Energi Baru Dan Terbarukan, 2(3), 154–162.
Soomar, A. M., Hakeem, A., Messaoudi, M., Musznicki, P., Iqbal, A., & Czapp, S. (2022). Solar photovoltaic energy optimization and challenges. Frontiers in Energy Research, 10.
Setyawan, L. B. (2018). Perkembangan dan Prospek Sel Fotovoltaik Organik: Sebuah Telaah Ilmiah. Techné Jurnal Ilmiah Elektroteknika, 17(02), 93–100.
Rosli, N., Sabani, N., Shahimin, M. M., Juhari, N., Shaari, S., Ahmad, M. F., & Zakaria, N. (2021). Dyes extracted from Hibiscus Sabdariffa flower and Pandannus amaryllifolius leaf as natural dye sensitizers by using an alcohol-based solvent. Journal of Physics. Conference Series, 1755(1), 012025.
Nursam, N. M. (2020). Pengaruh material counter electrode Pada dye-sensitized solar cell. Metalurgi, 34(3).
Huaulmé, Q., Mwalukuku, V. M., Joly, D., Liotier, J., Kervella, Y., Maldivi, P., Narbey, S., Oswald, F., Riquelme, A. J., Anta, J. A., & Demadrille, R. (2020). Photochromic dye-sensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency. Nature Energy, 5(6), 468–477.
Li, C.-T., Kuo, Y.-L., Kumar, C. H. P., Huang, P.-T., & Lin, J. T. (2019). Tetraphenylethylene tethered phenothiazine-based double-anchored sensitizers for high performance dye-sensitized solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 7(40), 23225–23233.
Liao, C., Zeng, K., Wu, H., Zeng, Q., Tang, H., Wang, L., Meier, H., Xie, Y., & Cao, D. (2021). Conjugating pillararene dye in dye-sensitized solar cells. Cell Reports. Physical Science, 2(2), 100326.
Grifoni, F., Bonomo, M., Naim, W., Barbero, N., Alnasser, T., Dzeba, I., Giordano, M., Tsaturyan, A., Urbani, M., Torres, T., Barolo, C., & Sauvage, F. (2021). Toward sustainable, colorless, and transparent photovoltaics: State of the art and perspectives for the development of selective near‐infrared dye‐sensitized solar cells. Advanced Energy Materials, 11(43), 2101598.
Kurumisawa, Y., Higashino, T., Nimura, S., Tsuji, Y., Iiyama, H., & Imahori, H. (2019). Renaissance of fused porphyrins: Substituted methylene-bridged thiophene-fused strategy for high-performance dye-sensitized solar cells. Journal of the American Chemical Society, 141(25), 9910–9919.
Trivedi, M., Gupta, R., & Nirmalkar, N. (2022). Electroosmotic transport and current rectification of viscoelastic electrolyte in a conical pore nanomembrane. Journal of Membrane Science, 659(120755), 120755.
Nurussaniah, N., Anita, A., & Boisandi, B. (2018). Isolasi Dye Organik Alam dan Karakterisasinya Sebagai Sensitizer. JIPF (Jurnal Ilmu Pendidikan Fisika), 3(1), 24.
Jeyaraj, E. J., Nathan, S., Lim, Y. Y., & Choo, W. S. (2022). Antibiofilm properties of Clitoria ternatea flower anthocyanin-rich fraction towards Pseudomonas aeruginosa. Access Microbiology, 4(4).
Widowati, W., Darsono, L., Lucianus, J., Setiabudi, E., Susang Obeng, S., Stefani, S., Wahyudianingsih, R., Reynaldo Tandibua, K., Gunawan, R., Riski Wijayanti, C., Novianto, A., Sari Widya Kusuma, H., & Rizal, R. (2023). Butterfly pea flower (Clitoria ternatea L.) extract displayed antidiabetic effect through antioxidant, anti-inflammatory, lower hepatic GSK-3β, and pancreatic glycogen on Diabetes Mellitus and dyslipidemia rat. Journal of King Saud University. Science, 35(4), 102579.
Ludin, N. A., Al-Alwani, M. A. M., Mohamad, A. B., Kadhum, A. A. H., Hamid, N. H., Ibrahim, M. A., Teridi, M. A. M., Ali Al-Hakeem, T. M., Mukhlus, A., & Sopian, K. (2018). Utilization of natural dyes from Zingiber officinale leaves and Clitoria ternatea flowers to prepare new photosensitisers for dye-sensitised solar cells. International Journal of Electrochemical Science, 13(8), 7451–7465.
Pramananda, V., Hadyan Fityay, T. A., & Misran, E. (2021). Anthocyanin as natural dye in DSSC fabrication: A review. IOP Conference Series: Materials Science and Engineering, 1122(1), 012104.
Kusumawati, Nita, Setiarso, P., Santoso, A. B., Muslim, S., A’yun, Q., & Putri, M. M. (2023). Characterization of poly(vinylidene fluoride) nanofiber-based electrolyte and its application to dye-sensitized solar cell with natural dyes. Indonesian Journal of Chemistry, 23(1), 113.
Bekele, E. T., & Sintayehu, Y. D. (2022). Recent progress, advancements, and efficiency improvement techniques of natural plant pigment-based photosensitizers for dye-sensitized solar cells. Journal of Nanomaterials, 2022, 1–35.
Serbanescu, O. S., Voicu, S. I., & Thakur, V. K. (2020). Polysulfone functionalized membranes: Properties and challenges. Materials Today. Chemistry, 17(100302), 100302.
Kusumawati, N., Setiarso, P., & Muslim, S. (2018). Polysulfone/polyvinylidene fluoride composite membrane: Effect of coating dope composition on membrane characteristics and performance. Rasayan Journal of Chemistry, 11(3), 1034–1041.
Lin, Y.-C., Tseng, H.-H., & Wang, D. K. (2021). Uncovering the effects of PEG porogen molecular weight and concentration on ultrafiltration membrane properties and protein purification performance. Journal of Membrane Science, 618(118729), 118729.
Silva, C., Santos, A., Salazar, R., Lamilla, C., Pavez, B., Meza, P., Hunter, R., & Barrientos, L. (2019). Evaluation of dye sensitized solar cells based on a pigment obtained from Antarctic Streptomyces fildesensis. Solar Energy (Phoenix, Ariz.), 181, 379–385.
Hayat, A., Putra, A. E. E., Amaliyah, N., & Pandey, S. S. (2019). Clitoria ternatea flower as natural dyes for Dye-sensitized solar cells. IOP Conference Series. Materials Science and Engineering, 619(1), 012049.
Tang, R., He, Y., & Fan, K. (2023). Recent advances in stability improvement of anthocyanins by efficient methods and its application in food intelligent packaging: A review. Food Bioscience, 56(103164), 103164.
Syafa’atullah, A. Q., Amira, A., Hidayati, S., & Mahfud, M. (2020). Anthocyanin from butterfly pea flowers (Clitoria ternatea) by ultrasonic-assisted extraction. THE 14TH JOINT CONFERENCE ON CHEMISTRY 2019.
Grifoni, F., Bonomo, M., Naim, W., Barbero, N., Alnasser, T., Dzeba, I., Giordano, M., Tsaturyan, A., Urbani, M., Torres, T., Barolo, C., & Sauvage, F. (2021). Toward sustainable, colorless, and transparent photovoltaics: State of the art and perspectives for the development of selective near‐infrared dye‐sensitized solar cells. Advanced Energy Materials, 11(43), 2101598.
Adawiyah, D. R., Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor, Indonesia, Muhandri, T., Subarna, S., Sugiyono1, S., & Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor, Indonesia. (2019). Pengaruh Fortifikasi Zat Besi Menggunakan Fe-Sulfat, Fe-Fumarat dan Na Fe EDTA Terhadap Kualitas Sensori Produk-Produk Olahan Tepung Terigu. Jurnal Mutu Pangan: Indonesian Journal of Food Quality, 6(2), 54–62.
Vasanthi, D. S., Ravichandran, K., Kavitha, P., Sriram, S., & Praseetha, P. K. (2020). Combined effect of Cu and N on bandgap modification of ZnO film towards effective visible light responsive photocatalytic dye degradation. Superlattices and Microstructures, 145(106637), 106637.
Çakar, S., Atacan, K., & Güy, N. (2019). Synthesis and characterizations of TiO2/Ag photoanodes for used indigo carmine sensitizer based solar cells. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 23–29.
Chalkias, D. A., Verykokkos, N. E., Kollia, E., Petala, A., Kostopoulos, V., & Papanicolaou, G. C. (2021). High-efficiency quasi-solid state dye-sensitized solar cells using a polymer blend electrolyte with "polymer-in-salt" conduction characteristics. Solar Energy (Phoenix, Ariz.), 222, 35–47.
Nur-E-Alam, M., Deowan, S. A., Hossain, E., Hossain, K. S., Miah, M. Y., & Nurnabi, M. (2024). Fabrication of polysulfone-based microfiltration membranes and their performance analysis. Water, Air, and Soil Pollution, 235(1).
Selvanathan, V., Yahya, R., Alharbi, H. F., Alharthi, N. H., Alharthi, Y. S., Ruslan, M. H., Amin, N., & Akhtaruzzaman, M. (2020). Organosoluble starch derivative as quasi-solid electrolytes in DSSC: Unravelling the synergy between electrolyte rheology and photovoltaic properties. Solar Energy (Phoenix, Ariz.), 197, 144–153.
Liu, Q., Gao, N., Liu, D., Liu, J., & Li, Y. (2018). Structure and photoelectrical properties of natural photoactive dyes for solar cells. Applied Sciences (Basel, Switzerland), 8(9), 1697.
Lai, T., & Qu, Z. (2023). Pore-scale parametric sensitivity analysis of liquid water transport in the gas diffusion layer of polymer electrolyte membrane fuel cell. Applied Thermal Engineering, 229, 120616.
Trivedi, M., Gupta, R., & Nirmalkar, N. (2022). Electroosmotic transport and current rectification of viscoelastic electrolyte in a conical pore nanomembrane. Journal of Membrane Science, 659(120755), 120755.
Alasfar, R. H., Kochkodan, V., Ahzi, S., Barth, N., & Koç, M. (2022). Preparation and characterization of polysulfone membranes reinforced with cellulose nanofibers. Polymers, 14(16), 3317.
He, M., Li, T., Hu, M., Chen, C., Liu, B., Crittenden, J., Chu, L.-Y., & Ng, H. Y. (2020). Performance improvement for thin-film composite nanofiltration membranes prepared on PSf/PSf-g-PEG blended substrates. Separation and Purification Technology, 230(115855), 115855.
Ahmad, T., Guria, C., & Mandal, A. (2020). Kinetic modeling and simulation of non-solvent induced phase separation: Immersion precipitation of PVC-based casting solution in a finite salt coagulation bath. Polymer, 199, 122527.
Folgado, E., Ladmiral, V., & Semsarilar, M. (2020). Towards permanent hydrophilic PVDF membranes. Amphiphilic PVDF-b-PEG-b-PVDF triblock copolymer as membrane additive. European Polymer Journal, 131, 109708.
Amalia, R., & Elvian Gayuh Prasetya, H. (2023). Membran Elektrolit Polimer Kitosan-Polyvinil Alkohol pada Direct Methanol Fuel Cell. Journal of Research and Technology, 8(2).
Chitsazan, A., & Monajje, M. (2020). Increasing the efficiency Proton exchange membrane (PEMFC) & other fuel cells through multi graphene layers including polymer membrane electrolyte. French-Ukrainian Journal of Chemistry, 8(1), 95–107.
Jeedi, V. R., Narsaiah, E. L., Yalla, M., Swarnalatha, R., Reddy, S. N., & Sadananda Chary, A. (2020). Structural and electrical studies of PMMA and PVdF based blend polymer electrolyte. SN Applied Sciences, 2(12).
Wang, J., Wang, L., Tiang, M., Tao, Y., Zou, Y., Yang, Y., Wen, Z., Liu, X., Wang, M., Li, L., Wang, D., & Gao, D. (2023). Fabrication of High-Crystallinity Covalent Organic Framework and Its Nylon Based Membrane: Application in the Enrichment and Interception of Dyes. Journal of Environmental Chemical Engineering, 11, 110989.
Zhang, Y., Miller, M. T., Boldt, R., & Stommel, M. (2023). Crystallinity Effect on Electron-Induced Molecular Structure Transformations In Additive-Free PLA.
Zahir, M. H., Rahman, M. M., Irshad, K., & Rahman, M. M. (2019). Shape-stabilized phase change materials for solar energy storage: MgO and Mg(OH)2 mixed with polyethylene glycol. Nanomaterials (Basel, Switzerland), 9(12), 1773.
Kalel, S., & Wang, W. C. (2023). Optical properties of PVDF-TrFE and PVDF-TrFE-CTFE films in terahertz band. Materials Research Express, 10(4).
Author Biographies
Sinta Anjas Cahyani, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya
Nita Kusumawati, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya
License
Copyright (c) 2024 Sinta Anjas Cahyani, Nita Kusumawati
This work is licensed under a Creative Commons Attribution 4.0 International License.
The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.
2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).