Determination of Antioxidant Activity in Kombucha of Kecombrang Flower (Etlingera elatior) for the Development of Functional Beverages

Authors

Putu Rima Sintyadewi , Pande P. Elza Fitriani

DOI:

10.29303/jpm.v19i2.6616

Published:

2024-03-30

Issue:

Vol. 19 No. 2 (2024): March 2024

Keywords:

Antioxidant; Functional Drink; Kecombrang Flower; Kombucha

Articles

Downloads

How to Cite

Sintyadewi, P. R., & Fitriani, P. P. E. (2024). Determination of Antioxidant Activity in Kombucha of Kecombrang Flower (Etlingera elatior) for the Development of Functional Beverages. Jurnal Pijar Mipa, 19(2), 343–347. https://doi.org/10.29303/jpm.v19i2.6616

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Researchers have widely reported that Kombucha is a probiotic drink with health benefits. Some researchers are innovating to find other kombucha media sources besides tea that contain high bioactive compounds. Kecombrang flowers contain high bioactive compounds and have physiological functions for health, but this plant has not been widely explored for other innovative beverage or food products. This study aimed to determine the optimal fermentation time of kecombrang flower kombucha (Etlingera elatior) to produce the highest antioxidant activity during fermentation. The experimental design used was a complete randomized design (CRD) with 7 variations of fermentation time (days 0, 3, 6, 9, 12, 15, and 18) with a sugar concentration of 10% b/v, and this treatment was repeated four times. In this research, pH, total acid, and total flavonoid tests were also carried out to see the characteristics of the kecombrang flower kombucha drink during fermentation. Data analysis was performed with an ANOVA at P < 0,05. The results showed that the length of fermentation time had a very significant effect (P < 0,01) on the antioxidant activity of Kombucha. These results indicate that the size of fermentation time affects the antioxidant activity of kecombrang flower kombucha. Optimal antioxidant activity was obtained after the kombucha drink was fermented for 6 days, as indicated by the low IC 50 value of 37,73 g/mL, with a pH of 3,7, total acid of 0,33%, and total flavonoids of 5,9 mg/L QE. Based on a research study, kecombrang flower kombucha has strong antioxidant activity (IC50 < 50 ppm), so kecombrang flower kombucha can be used as a choice for functional drinks.

References

Iličić, M. I. R. E. L. A., Kanurić, K. A. T. A. R. I. N. A., Milanović, S. P. A. S. E. N. I. J. A., Lončar, E., Djurić, M. I. R. J. A. N. A., & Malbaša, R. A. D. O. M. I. R. (2012). Lactose fermentation by Kombucha–a process to obtain new milk–based beverages. Romanian Biotechnological Letters, 17(1), 7013-7021.

Vitas, J. S., Malbaša, R. V., Grahovac, J. A., & Lončar, E. S. (2013). The antioxidant activity of Kombucha fermented milk products with stinging nettle and winter savory. Chemical Industry and Chemical Engineering Quarterly/CICEQ, 19(1), 129-139.

Bellassoued, K., Ghrab, F., Makni-Ayadi, F., Pelt, J. V., Elfeki, A., & Ammar, E. (2015). Protective effect of Kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activity. Pharmaceutical biology, 53(11), 1699-1709.

Bhattacharya, S., Gachhui, R., & Sil, P. C. (2013). Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food and chemical toxicology, 60, 328-340.

Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive reviews in food science and food safety, 13(4), 538-550.

Vohra, B. M., Fazry, S., Sairi, F., & Babul-Airianah, O. (2019). Effects of medium variation and fermentation time on the antioxidant and antimicrobial properties of Kombucha. Malaysian Journal of Fundamental and Applied Sciences, 15(2-1), 298-302.

Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K. (2020). Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants, 9(5), 447.

Suhardini, P. N., & Zubaidah, E. (2015). Studi aktivitas antioksidan kombucha dari berbagai jenis daun selama fermentasi [in press januari 2016]. Jurnal Pangan dan Agroindustri, 4(1).

Suhartatik, N., Karyantina, M., & Purwanti, I. T. (2009). Kombucha Rosella (Hibiscus sabdariffa Linn) dan kemampuannya sebagai antihiperkolesterolemia. Agritech, 29(1).

Sintyadewi, P. R., RS, I. G. A. Y. R., & Wulansari, N. T. (2021). Analysis of chemical characteristics and antioxidant activity test of kombucha black tea and butterfly pea flower (Clitoria ternatea L.) based on fermentation time. International Journal of Chemical and Material Sciences, 4(1), 27-32.

Maimulyanti, A., & Prihadi, A. R. (2015). Chemical composition, phytochemical and antioxidant activity from extract of Etlingera elatior flower from Indonesia. Journal of Pharmacognosy and Phytochemistry, 3(6), 233-238.

Ghasemzadeh, A., Jaafar, H. Z., Rahmat, A., & Ashkani, S. (2015). Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Etlingera elatior (Jack) RM Sm grown in different locations of Malaysia. BMC complementary and alternative medicine, 15, 1-10.

Kallel, L., Desseaux, V., Hamdi, M., Stocker, P., & Ajandouz, E. H. (2012). Insights into the fermentation biochemistry of Kombucha teas and potential impacts of Kombucha drinking on starch digestion. Food Research International, 49(1), 226-232.

Hidaya, I., & Wikandari, P. R. (2020). Pengembangan gelato sinbiotik berbahan dasar soygurt dan umbi Gembili (Dioscorea esculenta L.). Unesa Journal of Chemistry, 9(1), 17-22.

Pallant, Jullie. (2010). SPSS Survival Manual 4 th Edition. New York : Mc Graw Hill

Singh, R., P.K. Verma, dan G. Singh. (2012). Total Phenolic, Flavonoids and Tannin Contents in Different Extracts of Artemisia Absinthium. J. Intercult. Ethnopharmacol. 1(2):101-104

Marwati, H. S., & Handria, R. (2013). Pengaruh Konsentrasi Gula dan Starter terhadap Mutu Teh Kombucha. Jurnal Teknologi Pertanian, 8(02), 49-53.

Wulansari, N. T., Padmiswari, A. I. M., & Sintyadewi, P. R. (2023). Chemical characteristics during the fermentation process of siam kintamani orange peel (Citrus nobilis) probiotic drink. Jurnal Pijar Mipa, 18(5), 804-808.

Wistiana, D., & Zubaidah, E. (2014). Karakteristik Kimiawi Dan Mikrobiologis Kombucha Dari Berbagai Daun Tinggi Fenol Selama Fermentasi [In Press September 2015]. Jurnal Pangan dan Agroindustri, 3(4).

Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., ... & Coton, E. (2017). Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS microbiology ecology, 93(5), fix048.

Hur SunJin, H. S., Lee SeungYuan, L. S., Kim YoungChan, K. Y., Choi InWook, C. I., & Kim GeunBae, K. G. (2014). Effect of fermentation on the antioxidant activity in plant-based foods.

Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food chemistry, 120(2), 599-606.

Zheng, Y., Lu, Y., Wang, J., Yang, L., Pan, C., & Huang, Y. (2013). Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains. PloS one, 8(7), e69868.

Hunaefi, D., Akumo, D. N., Riedel, H., & Smetanska, I. (2012). The effect of Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM fermentation on antioxidant properties of selected in vitro sprout culture of Orthosiphon aristatus (java tea) as a model study. Antioxidants, 1(1), 4-32.

Hassmy, N. P. (2017). Analisis aktivitas antioksidan pada teh hijau kombucha berdasarkan waktu fermentasi yang optimal. PHARMACON, 6(4).

Fu, C., Yan, F., Cao, Z., Xie, F., & Lin, J. (2014). Antioxidant activities of Kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Science and Technology, 34, 123-126.

He, R., Ju, X., Yuan, J., Wang, L., Girgih, A. T., & Aluko, R. E. (2012). Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Research International, 49(1), 432-438.

Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. sci. technol, 26(2), 211-219.

Author Biographies

Putu Rima Sintyadewi, Bachelor of Food Technology Program, Faculty of Technology, Institute of Technology and Health Bali

Pande P. Elza Fitriani, Bachelor of Food Technology Program, Faculty of Technology, Institute of Technology and Health Bali

License

Copyright (c) 2024 Putu Rima Sintyadewi, Pande P. Elza Fitriani

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).