The Effect of Polyetherimide Polymer Membrane Composition on the Performance Efficiency of Dye Sensitized Solar Cell (DSSC) Based on Natural Photosensitizer of Butterfly Pea Flowers

Authors

Fadlurachman Faizal Fachrirakarsie , Nita Kusumawati

DOI:

10.29303/jpm.v19i3.6636

Published:

2024-05-25

Issue:

Vol. 19 No. 3 (2024): May 2024

Keywords:

Butterfly Pea Flowers; Efficiency; Energy; DSSC; Polyetherimide

Articles

Downloads

How to Cite

Fachrirakarsie, F. F., & Kusumawati, N. (2024). The Effect of Polyetherimide Polymer Membrane Composition on the Performance Efficiency of Dye Sensitized Solar Cell (DSSC) Based on Natural Photosensitizer of Butterfly Pea Flowers. Jurnal Pijar Mipa, 19(3), 507–513. https://doi.org/10.29303/jpm.v19i3.6636

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Global energy consumption will grow 1.3% in 2023-2024. This raises concerns about the scarcity of energy sources, most of which come from coal. This research is a true experiment with a one-shot case study design and aims to analyze the Dye-Sensitized Solar Cell (DSSC) from butterfly pea flowers (BPF) extract. However, DSSC has significant problems with liquid electrolyte leakage and solvent evaporation. Therefore, polyetherimide (PEI) membranes were investigated to overcome this problem. The BPF extract was examined for wavelengths, producing 573 nm and 617 nm wavelengths. The band gap was also checked, and it was found to produce 0.52 eV. The membrane used has five variations, where M3 is the most stable, with a reduction in performance efficiency of only 98%. The membrane has a porous surface, asymmetric structure, and a crystallinity degree of 12.77%. Overall, this membrane shows the most optimal performance in DSSC among other membranes.

References

Ayuketah, Y., Gyamfi, S., Diawuo, F. A., & Dagoumas, A. S. (2023). Assessment of low-carbon energy transition policies for the energy demand sector of Cameroon. Energy for Sustainable Development: The Journal of the International Energy Initiative, 72, 252–264.

Shirazi, M., & Fuinhas, J. A. (2023). Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence. Renewable Energy, 202, 347–361.

Belaïd, F., Al-Sarihi, A., & Al-Mestneer, R. (2023). Balancing climate mitigation and energy security goals amid converging global energy crises: The role of green investments. Renewable Energy, 205, 534–542.

Suresh, S., Prabu, K. M., Arivuselvi, R., Kandasamy, M., Pugazhenthiran, N., Kumar, S. K., Jothilakshmi, R., Murugesan, K. (2023). Cow dung extract as a low-cost and natural sensitizer for zinc oxide nanoparticles photoanode based dye-sensitized solar cell: A novel initiative for waste to energy conversion. Results in Chemistry, 6(101060), 101060.

Kalair, A., Abas, N., Saleem, M. S., Kalair, A. R., & Khan, N. (2021). Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage, 3(1).

Ebhota, W. S., & Tabakov, P. Y. (2023). Influence of photovoltaic cell technologies and elevated temperature on photovoltaic system performance. Ain Shams Engineering Journal, 14(7), 101984.

Roy, P., Ghosh, A., Barclay, F., Khare, A., & Cuce, E. (2022). Perovskite solar cells: A review of the recent advances. Coatings, 12(8), 1089.

Devadiga, D., Selvakumar, M., Shetty, P., & Santosh, M. S. (2021). Recent progress in dye-sensitized solar cell materials and photo-supercapacitors: A review. Journal of Power Sources, 493(229698), 229698.

Noorasid, N. S., Arith, F., Mustafa, A. N., Azam, M. A., Mahalingam, S., Chelvanathan, P., & Amin, N. (2022). Current advancement of flexible dye sensitized solar cell: A review. Optik, 254(168089), 168089.

Kim, J. H., Kim, D. H., So, J. H., & Koo, H. J. (2021). Toward Eco-friendly dye-sensitized solar cells (DSSCs): Natural dyes and aqueous electrolytes. Energies, 15(1), 219.

Amogne, N. Y., Ayele, D. W., & Tsigie, Y. A. (2020). Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell. Materials for Renewable and Sustainable Energy, 9(4).

Kurokawa, Y., Kato, T., & Pandey, S. S. (2023). Fabrication of solid‐state dye‐sensitized solar cells by controlled evaporation of solvents for creation of facile charge transport pathway. Physica Status Solidi (a).

Abbasi, A., Xu, Y., Khezri, R., Etesami, M., Lin, C., Kheawhom, S., & Lu, Y. (2022). Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries. Materials Today Sustainability, 18, 100126.

Alkhouzaam, A., & Qiblawey, H. (2021). Novel polysulfone ultrafiltration membranes incorporating polydopamine functionalized graphene oxide with enhanced flux and fouling resistance. Journal of Membrane Science, 620, 118900.

Tan, M., He, G., Dai, Y., Wang, R., & Shi, W. (2014). Calculation on phase diagrams of polyetherimide/N,N-dimethylacetamide/H2O-BuOH casting system and their relevance to membrane performances. Frontiers of Chemical Science and Engineering, 8(3), 312–319.

Neetu, Maurya, I. C., Gupta, A. K., Srivastava, P., & Bahadur, L. (2017). Extensive enhancement in power conversion efficiency of dye-sensitized solar cell by using Al-doped TiO2 photoanode. Journal of Solid State Electrochemistry: Current Research and Development in Science and Technology, 21(5), 1229–1241.

Kusumawati, N., Setiarso, P., Santoso, A. B., Muslim, S., A’yun, Q., & Putri, M. M. (2023). Characterization of poly(vinylidene fluoride) nanofiber-based electrolyte and its application to dye-sensitized solar cell with natural dyes. Indonesian Journal of Chemistry, 23(1), 113.

Thuy, N. M., Minh, V. Q., Ben, T. C., Thi Nguyen, M. T., Ha, H. T. N., & Van Tai, N. (2021). Identification of anthocyanin compounds in butterfly pea flowers (Clitoria ternatea L.) by ultra performance liquid chromatography/ultraviolet coupled to Mass spectrometry. Molecules (Basel, Switzerland), 26(15), 4539.

Widyadharma, I. P. E., Soejitno, A., Jawi, M., Purwata, T. E., Suprapta, D. N., & Sudewi, A. A. R. (2020). Basic Properties of Anthocyanin for Pain Management. Open Access Macedonian Journal of Medical Sciences, 8(F), 161–179.

Escher, G. B., Wen, M., Zhang, L., Rosso, N. D., & Granato, D. (2020). Phenolic composition by UHPLC-Q-TOF-MS/MS and stability of anthocyanins from Clitoria ternatea L. (butterfly pea) blue petals. Food Chemistry, 331(127341), 127341.

Fu, X., Wu, Q., Wang, J., Chen, Y., Zhu, G., & Zhu, Z. (2021). Spectral characteristic, storage stability and antioxidant properties of anthocyanin extracts from flowers of butterfly pea (Clitoria ternatea L.). Molecules (Basel, Switzerland), 26(22), 7000.

Juswardi, J., Yuliana, R., Tanzerina, N., Harmida, H., & Aminasih, N. (2023). Anthocyanin, antioxidant and metabolite content of butterfly pea flower (Clitoria ternatea L.) based on flowering phase. Jurnal Pembelajaran dan Biologi Nukleus, 9(2), 349–360.

Setiarso, P., Harsono, R. V., & Kusumawati, N. (2023). Fabrication of Dye Sensitized Solar Cell (DSSC) using combination of dyes extracted from Curcuma (Curcuma xanthorrhiza) rhizome and binahong (Anredera cordifolia) leaf with treatment in pH of the extraction. Indonesian Journal of Chemistry, 23(4), 924.

Abdulrahman, Z. H., Hachim, D. M., & Al−Murshedi, A. S. N. (2023). A review study to manufacture each part of dye-sensitized solar cells. 1ST International Conference on Achieving the Sustainable Development Goals.

Zhou, T., Li, L., Li, J., Wang, J., Bai, J., Xia, L., Xu, Q., & Zhou, B. (2021). Electrochemically reduced TiO2 photoanode coupled with oxygen vacancy-rich carbon quantum dots for synergistically improving photoelectrochemical performance. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 425(131770), 131770.

Li, Y., Zhang, W., Li, X., & Xu, Y. (2021). Boosting the photoelectric conversion efficiency of DSSCs through graphene quantum dots: insights from theoretical study. Materials Chemistry Frontiers, 5(15), 5814–5825.

Mirzaei, M., Rasouli, A. H., & Saedi, A. (2021). HOMO-LUMO photosensitization analyses of coronene-cytosine complexes. Main Group Chemistry, 20(4), 565–573.

Pallikkara, A., & Ramakrishnan, K. (2021). Efficient charge collection of photoanodes and light absorption of photosensitizers: A review. International Journal of Energy Research, 45(2), 1425–1448.

Shittu, H. A., Bello, I. T., Kareem, M. A., Awodele, M. K., Sanusi, Y. K., & Adedokun, O. (2020). Recent developments on the photoanodes employed in dye-sensitized solar cell. IOP Conference Series. Materials Science and Engineering, 805(1), 012019.

Xu, Z., Wang, L., Hong, S., & Chen, G. (2021). Generalized joint shuffled scheduling decoding algorithm for the JSCC system based on protograph-LDPC codes. IEEE Access: Practical Innovations, Open Solutions, 9, 128372–128380.

Ryzhkov, N. V., Brezhneva, N., & Skorb, E. V. (2019). Feedback mechanisms at inorganic–polyelectrolyte interfaces for applied materials. Surface Innovations, 7(3–4), 145–167.

Khir, H., Pandey, A. K., Saidur, R., Ahmad, M. S., Rahim, N. A., Dewika, M., & Samykano, M. (2022). Recent advancements and challenges in flexible low temperature dye sensitised solar cells. Sustainable Energy Technologies and Assessments, 53(102745), 102745.

Vargas-Barbosa, N. M., & Roling, B. (2020). Dynamic ion correlations in solid and liquid electrolytes: How do they affect charge and mass transport? ChemElectroChem, 7(2), 367–385.

Chen, M., Dong, H., Xue, M., Yang, C., Wang, P., Yang, Y., Zhu, H., Wu, C., Yao, Y., Luo, W., & Zou, Z. (2021). Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces. Nature Communications, 12(1).

Hasan, M. M., Islam, M. D., & Rashid, T. U. (2020). Biopolymer-based electrolytes for dye-sensitized solar cells: A critical review. Energy & Fuels: An American Chemical Society Journal, 34(12), 15634–15671.

Hampu, N., Werber, J. R., Chan, W. Y., Feinberg, E. C., & Hillmyer, M. A. (2020). Next-generation ultrafiltration membranes enabled by block polymers. ACS Nano, 14(12), 16446–16471.

Al-Ghafri, B., Lau, W.-J., Al-Abri, M., Goh, P.-S., & Ismail, A. F. (2019). Titanium dioxide-modified polyetherimide nanofiber membrane for water treatment. Journal of Water Process Engineering, 32(100970), 100970.

Kusumawati, N., Setiarso, P., Budi Santoso, A., Chendra Wibawa, S., & Muslim, S. (2019). The development of pvdf/Pei blended membrane: Effect of stirring time on membrane characteristics and performance. Rasayan Journal of Chemistry, 12(02), 975–986.

Cui, Y., Li, G., Wu, H., Pang, S., Zhuang, Y., Si, Z., Zhang, X., & Qin, P. (2023). Preparation and characterization of asymmetric Kapton membranes for gas separation. Reactive & Functional Polymers, 191(105667), 105667.

Wang, Z., Zeng, Y., Shen, Y., Tan, Q., Sun, J., Teng, J., & Lin, H. (2024). Innovative integration of porous materials and membranes: Achieving optimized pore orientation for enhanced performance. Journal of Membrane Science, 689(122158), 122158.

Helali, N., Rastgar, M., Farhad Ismail, M., & Sadrzadeh, M. (2020). Development of underwater superoleophobic polyamide-imide (PAI) microfiltration membranes for oil/water emulsion separation. Separation and Purification Technology, 238(116451), 116451.

Duraikkannu, S. L., Castro-Muñoz, R., & Figoli, A. (2021). A review on phase-inversion technique-based polymer microsphere fabrication. Colloids and Interface Science Communications, 40(100329), 100329.

Dolabella, S., Borzì, A., Dommann, A., & Neels, A. (2022). Lattice strain and defects analysis in nanostructured semiconductor materials and devices by high‐resolution X‐ray diffraction: Theoretical and practical aspects. Small Methods, 6(2).

Nasr, A., & Svoboda, P. (2023). Influence of fusion temperature on nonisothermal crystallization kinetics of polyamide 6. Polymers, 15(8), 1952.

Unger, L., Dechet, M. A., Fischer, S., Schmidt, J., & Bück, A. (2022). Semi‐crystalline polyetherimide microparticles via liquid‐liquid phase separation and precipitation. Macromolecular Materials and Engineering, 307(4).

Gerdroodbar, A. E., Alihemmati, H., Safavi-Mirmahaleh, S.-A., Golshan, M., Damircheli, R., Eliseeva, S. N., & Salami-Kalajahi, M. (2023). A review on ion transport pathways and coordination chemistry between ions and electrolytes in energy storage devices. Journal of Energy Storage, 74(109311), 109311.

Azmar, A., Subban, R. H. Y., & Winie, T. (2019). Improved long-term stability of dye-sensitized solar cell employing PMA/PVAc based gel polymer electrolyte. Optical Materials, 96(109349), 109349.

Author Biographies

Fadlurachman Faizal Fachrirakarsie, Department of Chemistry, Universitas Negeri Surabaya

Nita Kusumawati, Department of Chemistry, Universitas Negeri Surabaya

License

Copyright (c) 2024 Fadlurachman Faizal Fachrirakarsie, Nita Kusumawati

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.