Analysis of Corn Drying Rack Position on Tray Type Dryer on Drying Rate

Authors

Rudy Sutanto , Hendry Sakke Tira

DOI:

10.29303/jpm.v19i5.7027

Published:

2024-09-30

Issue:

Vol. 19 No. 5 (2024): September 2024

Keywords:

Corn; Dryer; Drying Rate; Mass; Water Content

Articles

Downloads

How to Cite

Sutanto, R., & Tira, H. S. (2024). Analysis of Corn Drying Rack Position on Tray Type Dryer on Drying Rate. Jurnal Pijar Mipa, 19(5), 888–892. https://doi.org/10.29303/jpm.v19i5.7027

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

This research aims to determine the drying characteristics of corn kernels using a tray-type dryer, including the moisture content of the corn kernels over time, the mass of the tested corn kernels over time and the drying rate over time. This research uses the experimental method. The drying process uses an incoming drying hot air temperature of 65ºC with an incoming hot drying air speed of 2 m/s, repeated three times until a water content of 14 ± 0.5% is reached. The dryer in this study used four stacking shelves counting from the bottom, which were filled with 500 grams per shelf. This research shows that the further the shelf is positioned from the incoming hot drying air, the lower the drying rate. Vice versa, the closer the drying Shelf is to the incoming hot air, the greater the drying rate. The average decrease in corn kernel mass was 0.95% for shelf 1, 0.93% for shelf 2, 0.90% for shelf 3 and 0.88% for shelf 4 during a drying period of 3.5 hours. The average decrease in water content was 4.4% for shelf 1, 4.29% for shelf 2, 4.15% for shelf 3 and 4% for shelf 4 during a drying period of 3.5 hours. The further the position of the shelf from the hot air dryer, the less air content contained in the material on the shelf can be absorbed by the hot air dryer and vice versa. The average drying rate was 16.8% for shelf 1, 15% for shelf 2, 13.6% for shelf 3 and 12.8% for shelf 4 during a drying period of 3.5 hours at a drying hot air temperature of 65oC with a drying air speed of 2 m/s. The research data analysis results showed that the hot air dryer should not be passed from below but rather from the side. This affects the drying process in the dryer and makes it evener.

References

. Rahmat, M., Patang., & Rais, M. (2019). Uji pengeringan biji jagung (zea mays. sp) menggunakan alat pengering biji bijian tipe rak (tray dryer), Jurnal Pendidikan Teknologi Pertanian, 5(4), 222-229.

. Syahrul, S., Romdhani, R., And Mirmanto, M. (2016). Pengaruh variasi kecepatan udara dan massa bahan terhadap waktu pengeringan jagung pada alat fluidized bed. Dinamika Teknik Mesin, 6(2), 119-126.

. Taufiq, M., (2004). Pengaruh temperatur terhadap laju pengeringan jagung pada pengering konvensional dan fluidized bed, Skripsi, Universitas Sebelas Maret Surakarta.

. Hargono, D. M., And Buchori, L., (2012). Karakterisasi proses pengeringan jagung dengan metode mixed-adsorption drying menggunakan zeolite pada unggun terfluidisasi. Reaktor, 14(1), 33-38.

. Suprianto, B., Haryudo, S. I., & Baskoro, F. (2021). Pengering jagung dengan elemen pemanas menggunakan sensor dht11 dan sersor kadar air berbasis arduino uno, Jurnal Teknik Elektro, 10(1), 163-171.

. Riswandi., Abdul, M., & Mahmuddin. (2020). Unjuk kerja pengering kakao tipe tray dryer dengan mengalirkan udara panas secara zik-zak, J-Move, 2(3), 50-56.

. Rosnawati, M. K., Douwes, D. M., Handry, R., (2017). Uji unjuk kerja alat pengering tipe rak model teta 17 pada pengeringan biji pala, COCOS, 9(4), 1-8.

. Putra, M. A., Asmara, S., Sugianti, C., & Tamrin. (2018). Uji kinerja alat pengering silinder vertikal pada proses pengeringan jagung (zea mays ssp. mays), Jurnal Teknik Pertanian Lampung, 7(2), 88-96.

. Mardani, J. (2018). Pengaruh variasi temperatur udara dan massa jagung pada alat fluidized bed dengan pipa penukar kalor terhadap waktu pengeringan jagung, Skripsi, Universitas Mataram.

. Pourbagher, R., Rohani, A., Rahmati, M. H., & Abbaspour-Fard, M. H. (2018). Modeling and optimization of drying process of paddy in infrared and warm air fluidized bed dryer, AgricEngInt: CIGR J, 20(3), 162-171.

. Isman, H., & Zaenuri, M. A. (2020). Rancang bangun pengering jagung energi surya dengan turbin ventilator, Jurnal Integrasi, 12(2), 105-111.

. Shringi, V., Kothari, S., & Panwar, N. L. (2014). Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage, Journal of Thermal Analysis and Calorimetry, 118(1), 533-539.

. Yang, B., Liang, G., Peng, J., Guo, S., Li, W., Zhang, S., Li, Y., & Bai, S. (2013). Self-adaptive PID controller of microwave drying rotary device tuning on-line by genetic algorithms, Journal of Central South University, 20(10), 2685-2692.

. Rahman, M. M., Mustayen, A. G. M. B., Mekhilef, S., & Saidur, R. (2015). The optimization of solar drying of grain by using a genetic algorithm, International Journal of Green Energy, 12(12), 1222–1231.

. Manikantan, M. R., Barnwal, P., & Goyal, R. K. (2014). Drying characteristics of paddy in an integrated dryer, Journal of Food Science and Technology, 51(4), 813-819.

. Yogendrasasidhar, D., & Pydi Setty, Y. (2018). Drying kinetics, exergy and energy analyses of kodo millet grains and fenugreek seeds using wall heated fluidized bed dryer, Renewable and Sustainable Energy Reviews, 15, 799-811.

. Aghbashlo, M., Mobli, H., Rafiee, S., & Madadlou, A. (2013). A review on exergy analysis of drying processes and systems, Renewable and Sustainable Energy Reviews, 22, 1-22.

. Sansaniwal, S. K., Sharma, V., & Mathur, J. (2018). Energy and exergy analyses of various typical solar energy applications: a comprehensive review, Renewable and Sustainable Energy Reviews, 82(1), 1576-1601.

. Golman, B., & Julklang, W. (2014). Analysis of heat recovery from a spray dryer by recirculation of exhaust air, Energy Conversion and Management, 88, 641-649. DOI:10.1016/j.enconman.2014.09.012.

. Zhang, X. R., Zheng, Q. Y., Gao, J. Z., & Shi, X. H. (2015). Technology and application of waste heat recovery from tail gas of grain drying system, International Energy Conservation and Environment Protection Convention, 11, 74–75.

. Bai, J. W., Luo, S. Q., Ye, J., Liu, L., Niu, M.J., & Deng, X. M. (2008). Design of the waste heat utilizing system on multifunctional tractor, Journal of Agricultural Mechanization, 12, 195-197.

. Tuncel, N. B., Yilmaz, N., Kocabiyik, H., Öztürk, N., & Tunçel. M. (2010). The effects of infrared and hot air drying on some properties of corn (zea mays), J. Food Agric. Environ, 8, 63-68.

. Pan, Z., Khir, R., & Bett-Garber, K. L. (2013). Drying characteristics and quality of rough rice under infrared radiation heating, Trans. ASABE, 54(1), 203-210.

. da Silva, G. M., Ferreira, A. G., Coutinho, R. M., & Maia, C. B. (2021). Energy and exergy analysis of the drying of corn grains, Renewable Energy, 163, 1942-1950.

Author Biographies

Rudy Sutanto, Department of Mechanical Engineering, Faculty of Engineering, University of Mataram

Hendry Sakke Tira, Department of Mechanical Engineering, Faculty of Engineering, University of Mataram

License

Copyright (c) 2024 Rudy Sutanto, Hendry Sakke Tira

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).