Green Synthesis of Gold Nanoparticles Using Bioreductors of Bilimbi Fruit Extract (Averrhoa bilimbi L.) as an Antioxidant
DOI:
10.29303/jpm.v19i5.7323Published:
2024-09-30Issue:
Vol. 19 No. 5 (2024): September 2024Keywords:
Antioxidant Activity; Bilimbi; Gold Nanoparticles; Green SynthesisArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
The rapid development of technology today affects the birth of renewable technologies such as nanotechnology. This study reports the results of synthesizing gold nanoparticles with a more environmentally friendly method (green synthesis) using bilimbi fruit extracted through the infusion process. This synthesis method approach can be widely used in biological preparation. This study aims to determine the characteristics of synthesized gold nanoparticles and their potential as antioxidants shown through IC50 intensity. UV-Vis spectrophotometer and TEM were used to analyze the quantitative formation of gold nanoparticles. The analysis used 20, 10, 5, and 2.5 ppm concentration variations. The UV-Vis spectrum characterization results showed a surface plasmon resonance (SPR) of 534-536 nm. The average diameter of the synthesized nanoparticles was 7.98 nm withΩΩ, an approximate overall particle size of 7-12 nm characterized using TEM. Antioxidant activity was carried out using 1,1-diphenyl-2-picrylhydrazyl (DPPH) silencing assay. The percent attenuation at each gold nanoparticle concentration of 20, 10, 5, and 2.5 ppm was 99.4%, 90.7%, 79.5%, and 71.9%, respectively. So, the IC50 value can be obtained at 0.514 ppm, which is included in the strong antioxidant. This shows that gold nanoparticles mediated by bilimbi fruit extract are effective antioxidant agents.
References
Shabestarian, H., Homayouni-Tabrizi, M., Soltani, M., Namvar, F., Azizi, S., Mohamad, R., & Shabestarian, H. (2017). Green synthesis of gold nanoparticles using sumac aqueous extract and their antioxidant activity. Materials Research, 20(1), 264–270.
Ajitha, B., Ashok Kumar Reddy, Y., & Sreedhara Reddy, P. (2015). Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Materials Science and Engineering C, 49, 373–381.
Kus‐liśkiewicz, M., Fickers, P., & Ben Tahar, I. (2021). Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. International Journal of Molecular Sciences, 22(20).
Nam, N. H., & Luong, N. H. (2020). Nanoparticles: synthesis and applications. Materials for Biomedical Engineering: Inorganic Micro and Nanostructures., 7(January).
Amina, S. J., & Guo, B. (2020). A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. International Journal of Nanomedicine, 15, 9823–9857.
Annur, S., Santosa, S. J., Aprilita, N. H., Phuong, N. T., & Phuoc, N. Van. (2018). Rapid synthesis of gold nanoparticles without heating process. Asian Journal of Chemistry, 30(11), 2399–2403.
Annur, S., Santosa, S. J., & Aprilita, N. H. (2018). PH dependence of size control in gold nanoparticles synthesized at room temperature. Oriental Journal of Chemistry, 34(5), 2305–2312.
Zuhrotun, A., Oktaviani, D. J., & Hasanah, A. N. (2023). Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compounds. Molecules, 28(7).
Silalahi, M. (2021). Pemanfaatan dan Bioaktivitas Bilimbing Wuluh (Averrhoa bilimbi L.). Titian Ilmu: Jurnal Ilmiah Multi Sciences, 13(1), 39–45.
Suluvoy, J. K., & Berlin Grace, V. M. (2017). Phytochemical profile and free radical nitric oxide (NO) scavenging activity of Averrhoa bilimbi L. fruit extract. 3 Biotech, 7(1).
Wahyuni, D., Yosi, F., & Muslim, G. (2021). Pengaruh Larutan Belimbing Wuluh (Averrhoa bilimbi L) Sebagai Bahan Marinasi Terhadap Daya Terima Daging Kambing. Jurnal Ilmu Peternakan Dan Veteriner Tropis (Journal of Tropical Animal and Veterinary Science), 11(1), 55.
Kuala, U. S., Aceh, B., Kuala, U. S., Aceh, B., Kuala, U. S., & Aceh, B. (2023). The effect of addition bilimbi juice (. 8(May), 7–12.
Yudistira, B., Widodo, E., & Sjofjan, O. (2013). The Effect Of Averrhoa Bilimbi L. Juice As Feed Additive On Layer Hen Gut Microflora. 3–4.
Sari, D. N., & Taufikurohmah, T. (2019). Pengaruh Penambahan Nanogold Terhadap Aktivitas Antioksidan Ekstrak Gambir (Uncaria gambir Roxb.). Journal of Chemistry, 8(1), 20–27.
Gladyshev, V. N. (2014). The free radical theory of aging is dead. Long live the damage theory! Antioxidants and Redox Signaling, 20(4), 727–731.
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of.
Christodoulou, M. C., Palacios, J. C. O., Hesami, G., Jafarzadeh, S., Lorenzo, J. M., Moreno, A., & Hadidi, M. (2022). Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals.
Shobib, A., Kusumo, P., & Millah, N. (2022). Characterization Test of Binahong ( Anredera Cordifolia ( TEN .) STEENIS .) Leaves and Aloe Vera ( Aloe Vera ) Leaves Extracts using Infudation Method in Making Liquid for External Wound Healing. 1, 28–38.
Rahim, A. R., S.P, A. S., Z.K, D. D., T, E. A., Fidda R, S., & H, M. R. A. (2022). Modifikasi Herbal Drink Dari Optimasi Kelor (Moringa Oleifera), Seledri (Apium Graveolens) Dan Rosela (Hibiscus Sabdariffa) Dengan Metode Infusa Di Desa Sidokelar. DedikasiMU : Journal of Community Service, 4(1), 35.
Peloan, T., & Kaempe, H. (2020). Pengaruh Lama Penyimpanan Ekstrak Daun Gedi Merah Ter- Hadap Kandungan Total Flafonoid. Pharmacy Medical Journal, 70(3), 360–374.
Castro-Puyana, M., Marina, M. L., & Plaza, M. (2017). Water as green extraction solvent: Principles and reasons for its use. Current Opinion in Green and Sustainable Chemistry, 5, 31–36.
Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13, 20.
Yanti, E. F., & Taufikurohmah, T. (2013). Sintesis Nanogold dan Karakterisasi Menggunakan Matrik Cetostearyl Alcohol sebagai Peredam Radikal Bebas dalam Kosmetik. Unesa Journal of Chemistry, 2(1), 14–18.
Tran, M., DePenning, R., Turner, M., & Padalkar, S. (2016). Effect of citrate ratio and temperature on gold nanoparticle size and morphology. Materials Research Express, 3(10).
Hassanisaadi, M., Bonjar, G. H. S., Rahdar, A., Pandey, S., Hosseinipour, A., & Abdolshahi, R. (2021). Environmentally safe biosynthesis of gold nanoparticles using plant water extracts. Nanomaterials, 11(8).
Perera, G. S., Athukorale, S. A., Perez, F., Pittman, C. U., & Zhang, D. (2018). Facile displacement of citrate residues from gold nanoparticle surfaces. Journal of Colloid and Interface Science, 511, 335–343.
Oliveira, A. E. F., Pereira, A. C., Resende, M. A. C., & Ferreira, L. F. (2023). Gold Nanoparticles: A Didactic Step-by-Step of the Synthesis Using the Turkevich Method, Mechanisms, and Characterizations. Analytica, 4(2), 250–263.
Kitching, M., Inguva, S., Ramani, M., Gao, Y., Marsili, E., & Cahill, P. (2022). Biosynthesis of Gold Nanoparticles by Vascular Cells in vitro. Frontiers in Microbiology, 13, 813511.
Luty-błocho, M., Cyndrowska, J., & Rutkowski, B. (2024). Synthesis of Gold Clusters and Nanoparticles Using Cinnamon Extract — A Mechanism and Kinetics Study.
Aji, A., Santosa, S. J., & Kunarti, E. S. (2020). Effect of reaction time and stability properties of gold nanoparticles synthesized by p-aminobenzoic acid and p-aminosalicylic acid. Indonesian Journal of Chemistry, 20(2), 413–421.
Gulcin, I., & Alwasel, S. H. (2023). DPPH Radical Scavenging Assay.
Ngibad, K., Nur, S., Yusmiati, H., Santoso, S. D., & Inayah, F. (2023). In Vitro Antioxidant Activity , Flavonoid and Phenolic Contents of 70 % Methanol Extract from Purple and Yellow Passion Fruit Peel. 6(2), 54–62.
Muliasari, H., Yuanita, E., Muliasari, H., Sopiah, B., Yuanita, E., Nila, B., & Ningsih, S. (2023). Free-Radical Scavenging Activity and Total Phenolic Compounds of Red and Green Poinsettia Leaves ( Euphorbia pulcherrima Willd .) from Lombok Island Free-Radical Scavenging Activity and Total Phenolic Compounds of Red and Green Poinsettia Leaves ( Euphorbia pulcherrima Willd .) from Lombok Island. 27(4).
Wilapangga, A., & Sari, L. P. (2018). Analisis Fitokimia Dan Antioksidan Metode DPPH Ekstrak Metanol Daun Salam (Eugenia Polyantha). Eugenia Polyantha) IJOBB, 2(1), 19–24.
Berlianti, L., Gita Miranti, M., Diana Wati, I., Indah Sabila, F., & Negeri Surabaya, U. (2021). Uji Aktivitas Antioksidan Minuman Suplemen Protein-Multivitamin dari Filtrat Almond dan Tempe. Prosiding.Unimus.Ac.Id, 70–77. https://prosiding.unimus.ac.id/index.php/semnas/article/download/774/785
Riskianto, Kamal, S. E., & Aris, M. (2021). Aktivitas Antioksidan Ekstrak Etanol 70% Daun Kelor ( Moringa oleifera Lam.) terhadap DPPH. Jurnal Pro-Life, 8(2), 168–177.
Author Biographies
Aan Dimas Triana, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya
Titik Taufikurohmah, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya
License
Copyright (c) 2024 Aan Dimas Triana, Titik Taufikurohmah
This work is licensed under a Creative Commons Attribution 4.0 International License.
The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.
2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).