Green Synthesis of Gold Nanoparticles Using Moringa Oleifera Leaf Extract Bioreductor (Moringa oleifera L.) and Activity Test as Antioxidant

Authors

Ratna Indriyani , Titik Taufikurohmah

DOI:

10.29303/jpm.v19i5.7325

Published:

2024-09-30

Issue:

Vol. 19 No. 5 (2024): September 2024

Keywords:

Antioxidant Activity; Gold Nanoparticles; Green Synthesis; Moringa Leaf Extract

Articles

Downloads

How to Cite

Indriyani, R., & Taufikurohmah, T. (2024). Green Synthesis of Gold Nanoparticles Using Moringa Oleifera Leaf Extract Bioreductor (Moringa oleifera L.) and Activity Test as Antioxidant. Jurnal Pijar Mipa, 19(5), 881–887. https://doi.org/10.29303/jpm.v19i5.7325

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Gold nanoparticles are inorganic metal materials with sizes ranging from 5-400 nm and are in the form of a suspension solution that undergoes a process of reducing particle size to nano form. This study aimed to determine the results of synthesizing gold nanoparticles (AuNPs) at a concentration of 20 ppm using a bottom-up approach with a green synthesis method characterized using a UV-Vis spectrophotometer and TEM and antioxidant activity test using DPPH. In this study, the synthesis of gold nanoparticles (AuNPs) with a concentration of 20 ppm was carried out using a bottom-up approach with the green synthesis method. The parent solution of HAuCl4 was reduced with Moringa oleifera leaf extract (Moringa oleifera L.) bioreductor, which produced burgundy-colored gold nanoparticles. The results of the characterization of gold nanoparticles using a UV-Vis spectrophotometer obtained the previous wavelength of HAuCl4 of 309 nm. After being synthesized using moringa leaf extract bioreductor (Moringa oleifera L.), the maximum wavelength was shifted to 542.80 nm, with an absorbance value of 0.213. The characterization results using TEM obtained a diverse cluster size of gold nanoparticles with an average length of 6.635 and still in the nanometer size range with the highest frequency at 4-5 nm. The antioxidant activity test of gold nanoparticles was carried out at a concentration variation of 2.5, 5, 10, and 20 ppm, obtaining the percent of free radical suppression sequentially 69, 77, 76, and 83% with an IC50 value <50, which is 0.11 ppm which indicates that the antioxidant activity of gold nanoparticles is extreme. It can be concluded that gold nanoparticles synthesized using Moringa leaf extract have the potential to be a good antioxidant.

References

Altammar, K. A. (2023). A review on nanoparticles: characteristics, synthesis, applications, and challenges. Frontiers in Microbiology, 14(April), 1–20.

Oktavia, I. N., & Sutoyo, S. (2021). Review Artikel: Sintesis Nanopartikel Perak Menggunakan Bioreduktor Ekstrak Tumbuhan Sebagai Bahan Antioksidan. Unesa Journal of Chemistry, 10(1), 37–54.

GM, A. W., Putri, S. E., & Syahrir, M. (2021). Biosintesis Nanopartikel Emas Menggunakan Ekstrak Etanol Daun Jambu Bol Putih. Jurnal Sains Dan Terapan Kimia, 15(1), 18.

Putri, M. D. R., Dahlizar, S., & Noviyanto, A. (2021). Sintesis, Kharakteristik, Penetrasi Kulit, dan Toksisitas Nanogold: A Systematic Review. Pharmaceutical and Biomedical Sciences Journal (PBSJ), 2(2), 65–78.

Roy, A., Pandit, C., Gacem, A., Alqahtani, M. S., Bilal, M., Islam, S., Hossain, M. J., & Jameel, M. (2022). Biologically Derived Gold Nanoparticles and Their Applications. Bioinorganic Chemistry and Applications, 2022.

Muna, L. (2022). Aktivitas antioksidan ekstrak air daun kelor (Moringa oleifera) dengan metode DPPH serta analisis kualitatif kandungan metabolit sekunder. Sasambo Journal of Pharmacy, 3(2), 91–96.

Yuliani, N. N., & Dienina, D. P. (2015). Uji Aktivitas Antioksidan Infusa Daun Kelor (Moringa oleifera, Lamk) dengan Metode1,1-diphenyl-2-picrylhydrazil (DPPH). 14(2), 1061–1080.

Santhosh, P. B., Genova, J., & Chamati, H. (2022). Green synthesis of gold nanoparticless: An Eco-Friendly Approach. Oriental Journal of Chemistry, 4(2), 345–369.

Ibroham, M. H., Jamilatun, S., & Kumalasari, I. D. (2022). A Review: Potensi tumbuhan-tumbuhan di Indonesia sebagai antioksidan alami. Seminar Nasional Penelitian, 1–13.

Sari, D. N., & Taufikurohmah, T. (2019). PENGARUH PENAMBAHAN NANOGOLD TERHADAP AKTIVITAS ANTIOKSIDAN EKSTRAK GAMBIR (Uncaria gambir Roxb.). Journal of Chemistry, 8(1), 20–27.

Oliveira, A. E. F., Pereira, A. C., Resende, M. A. C., & Ferreira, L. F. (2023). Gold Nanoparticles: A Didactic Step-by-Step of the Synthesis Using the Turkevich Method, Mechanisms, and Characterizations. Analytica, 4(2), 250–263.

Darmajana, D. A., Hadiansyah, F., & Desnilasari, D. (2017). The antioxidant activity test by using DPPH method from the white tea using different solvents. AIP Conference Proceedings, 1904.

Salim, R. (2018). Uji Aktivitas Antioksidan Infusa Daun Ungu Dengan Metoda DPPH (1,1- diphenil- 2-picrylhidrazil). Jurnal Katalisator, 3(2), 153.

Djahilape, S. R., Suprijono, A., & Wulan S., A. A. H. (2020). and the Determination of Total Flavonoid. Media Farmasi Indonesia, 11(1), 1014–1023.

Satriyani, D. P. P. (2021). Review artikel: Aktivitas Antioksidan Ekstrak Daun Kelor (Moringa oleifera Lam.). Jurnal Farmasi Malahayati, 4(1), 31–43.

Vergara-Jimenez, M., Almatrafi, M. M., & Fernandez, M. L. (2017). Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants, 6(4), 1–13.

Pakade, V., Cukrowska, E., & Chimuka, L. (2013). Metal and flavonol contents of Moringa oleifera grown in South Africa. South African Journal of Science, 109(3–4), 1–7.

Verdiana, M., Widarta, I. W. R., & Permana, I. D. G. M. (2018). Pengaruh Jenis Pelarut Pada Ekstraksi Menggunakan Gelombang Ultrasonik Terhadap Aktivitas Antioksidan Ekstrak Kulit Buah Lemon (Citrus limon (Linn.) Burm F.). Jurnal Ilmu Dan Teknologi Pangan (ITEPA), 7(4), 213.

Yanti, E. F., & Taufikurohmah, T. (2013). Sintesis Nanogold dan Karakterisasi Menggunakan Matrik Cetostearyl Alcohol Sebagai Peredam Radikal Bebas Dalam Kosmetik. Classical and Quantum Gravity, 2, 14–18.

‘Aini, F. Q., & Taufikurohmah, T. (2022). The Effect of Nanogold-Nanosilver Injection on Increasing the Immunity of Community Affected by Covid-19. International Journal of Current Science Research and Review, 05(04), 1116–1125.

Tamam, N., & Hidajati, N. (2014). Penentuan Ukuran Cluster Nanopartikel Emas Menggunakan Matrik Gliserin dengan Instrumen Zetasizer Nano. Journal of Chemistry, 3(2), 40–46.

Lestari, D. G. ayu, Cahyadi, K. D., & Esati, N. K. (2022). Biosintesis Nanopartikel Emas Menggunakan Ekstrak Air Buah Andaliman (Zanthoxylum acanthopodium DC). Indonesian E-Journal of Applied Chemistry, 10(1), 17–23.

Nursyamsi, Zakir, M., & Dali, S. (2015). Pemanfaatan Fraksi Etil Asetat Daun Ketapang (Terminalia catappa) Sebagai Bioreduktor Dalam Sintesis Nanopartikel Perak Dan Analisis Sifat Antibakterinya.

Senthil Kumar, P., Grace Pavithra, K., & Naushad, M. (2019). Characterization techniques for nanomaterials. In Nanomaterials for Solar Cell Applications. Elsevier Inc.

Amin, F., Mahardika, M., & Fatimah, S. (2020). Sintesis Dan Karakterisasi Nanopartikel Emas Menggunakan Bioreduktor Dari Ekstrak Daun Berenuk. Jurnal Ilmiah Teknik Kimia, 4(2), 54.

Fazrin, E. I., Naviardianti, A. I., Wyantuti, S., Gaffar, S., & Hartati, Y. W. (2020). Review : Sintesis Dan Karakterisasi Nanopartikel Emas ( AuNP ) Serta Konjugasi AuNP Dengan DNA Dalam Aplikasi Biosensor Elektrokimia. 4(2), 21–39.

Kurniawati, I. F., & Sutoyo, S. (2021). Review Artikel: Potensi Bunga Tanaman Sukun (Artocarpus Altilis [Park. I] Fosberg) Sebagai Bahan Antioksidan Alami. Unesa Journal of Chemistry, 10(1), 1–11.

Berlianti, L., Gita Miranti, M., Diana Wati, I., Indah Sabila, F., & Negeri Surabaya, U. (2021). Uji Aktivitas Antioksidan Minuman Suplemen Protein-Multivitamin dari Filtrat Almond dan Tempe. Prosiding.Unimus.Ac.Id, 70–77.

Riskianto, Kamal, S. E., & Aris, M. (2021). Aktivitas Antioksidan Ekstrak Etanol 70% Daun Kelor ( Moringa oleifera Lam.) terhadap DPPH. Jurnal Pro-Life, 8(2), 168–177.

Sargazi, S., Laraib, U., Er, S., Rahdar, A., Hassanisaadi, M., Zafar, M. N., Díez-Pascual, A. M., & Bilal, M. (2022). Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. Nanomaterials, 12(7).

Meilani, K. (2021). Uji Aktivitas Antioksidan Dan Antibakteri Nanopartikel Emas Hasil Biosintesis Ekstrak Air Bunga Cengkeh ( Syzygium aromaticum ( L .) Merr .& L . M . Perry ) Antioxidant and Antibacterial Activity of Gold Nanoparticles Resulting from. x, 178–188.

Noer, S., Dewi, R., & Gresinta, E. (2017). Uji Aktivitas Antioksidan dan Uji Antibakteri Fusobacterium nucleatum dari Ekstrak Etanol Daun Ruta angustifolia. Prosiding SEMNASTAN, 272–277.

Author Biographies

Ratna Indriyani, Departement of Chemistry, Faculty of Mathematic and Natural Science, Universitas Negeri Surabaya

Titik Taufikurohmah, Departement of Chemistry, Faculty of Mathematic and Natural Science, Universitas Negeri Surabaya

License

Copyright (c) 2024 Ratna Indriyani, Titik Taufikurohmah

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).