Stochastic Modeling with Poisson Hidden Markov in Hepatitis B Cases

Authors

Ersya Nurul Fairuz , Rina Widyasari , Rima Aprilia

DOI:

10.29303/jpm.v19i6.7510

Published:

2024-11-30

Issue:

Vol. 19 No. 6 (2024): November 2024

Keywords:

Hepatitis B; Poisson Hidden Markov; Stochastic Model

Articles

Downloads

How to Cite

Fairuz, E. N., Widyasari, R., & Aprilia, R. (2024). Stochastic Modeling with Poisson Hidden Markov in Hepatitis B Cases. Jurnal Pijar Mipa, 19(6), 1111–1117. https://doi.org/10.29303/jpm.v19i6.7510

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Hepatitis B is transmitted through blood or body fluids contaminated with the virus from Hepatitis B sufferers (carriers). The factors that cause a person to contract Hepatitis B are sexual intercourse, blood contact, placental contact from the mother to the baby, and saliva. The incubation period for Hepatitis B Virus (HBV) ranges from 30 - 180 days with an average of 60 - 90 days. HBV can be detected 30 - 60 days after infection and persists for a certain period. Thus, the behaviour of infectious diseases can be observed and described using mathematical modelling. Mathematical modelling is a field of mathematics that represents and explains physical systems or problems that occur in the real world and are solved in mathematical statements. The mathematical model used to overcome uncertainty in variable values ​​is a stochastic model. These causal factors are not directly observed and form a Markov chain. The model that can be used for the uncertainty of an event is the Hidden Markov Model. The Hidden Markov Model (MHM) is a type of stochastic modelling that does not recognize the factors that trigger the problem being modelled. The Poisson Hidden Markov model is used to model Hepatitis B disease. Hepatitis B disease data is a series of observations that experience overdispersion and depend on the trigger of Hepatitis B disease, which is assumed not to be observed directly and forms a Markov chain. The aim to be achieved in this research is to model Hepatitis B disease at the Medan Haji Hospital using the Poisson Hidden Markov model and to find parameter estimates using the Expectation Maximization Algorithm. This type of research uses quantitative research methods. The conclusions that can be drawn based on the results and previous discussions are as follows: the method for determining the average number of patients in patient B can use the PHMM (Poisson Hidden Markov Model) method with the EiM (Expectation-Maximization Algorithm) algorithm, the best model for the number of Hepatitis B patients in Haji Hospital at this hospital is the model with three hidden cases with the parameter estimation value. The average number of Hepatitis B patients is 0.0324 in 1 month, and the average predicted results obtained by the hidden condition model 3 align with the original conditions in the previous months.

References

Widoyono, M. P. H. (2011). Penyakit Tropis Epidemiologi, Penularan, Pencegahan & Pemberantasan. Jakarta: Penerbit Erlangga Indonesia..

Manaqib, M., Yuliawati, A. K., & Zulkifli, D. U. (2023). MATHEMATICAL MODEL OF MEASLES DISEASE SPREAD WITH TWO-DOSE VACCINATION AND TREATMENT. Journal of Fundamental Mathematics and Applications (JFMA), 6(2), 209-223.

Siswanto, S., & Octavianur, E. (2020). Epidemiologi Penyakit Hepatitis.

Mustofa, S., & Kurniawaty, E. (2013). Manajemen gangguan saluran cerna panduan bagi dokter umum. Bandar Lampung: Aura Printing & Publishing. hlm, 272.

Idaiani, S., Yunita, I., Tjandrarini, D. H., Indrawati, L., Darmayanti, I., Kusumawardani, N., & Mubasyiroh, R. (2019). Prevalensi Psikosis di Indonesia berdasarkan Riset Kesehatan Dasar 2018. Jurnal Penelitian Dan Pengembangan Pelayanan Kesehatan, 9-16.

Sarvi, F., Nadali, A., Khodadost, M., Moghaddam, M. K., & Sadeghifar, M. (2017). Application of Poisson Hidden Markov model to predict number of PM2. 5 exceedance days in Tehran during 2016-2017. Avicenna Journal of Environmental Health Engineering, 4(1), 58031-58031.

Widita, H., Soemohardjo, S., Muttaqin, Z., Wiguna, P. A., Rhamdiani, S. O., Wijaya, M., & Gunawan, S. (2012). Detection of HBV-DNA and its correlation with the HBeAg/Anti-HBe serological status in HBsAg-positive patients. The Indonesian Journal of Gastroenterology, Hepatology, and Digestive Endoscopy, 13(2), 86-89.

Sugiyarto, H. (2021). Pengantar Proses Stokastik. Yogyakarta: Universitas Ahmad Dahlan.

Suryandaru, R. (2015). Estimasi Model Terbaik Banyaknya Gempa Bumi Menggunakan Poisson Hidden Markov Models dan Algoritma EM. Jakarta: Universitas Islam Negeri Syarif Hidayatullah.

Lekone, P. E., & Finkenstädt, B. F. (2006). Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics, 62(4), 1170-1177.

Aprilia, R., & Panjaitan, D. J. (2022). Pemodelan Matematika.

Nåsell, I. (2002). Stochastic models of some endemic infections. Mathematical biosciences, 179(1), 1-19.

Ceres, K. M., Schukken, Y. H., & Gröhn, Y. T. (2020). Characterizing infectious disease progression through discrete states using hidden Markov models. Plos one, 15(11), e0242683.

Banks, J., & Chwif, L. (2011). Warnings about simulation. Journal of simulation, 5(4), 279-291.

Nurhasanah, N., Setiawaty, B., & Bukhari, F. (2016). Pemodelan Poisson Hidden Markov Untuk Prediksi Banyaknya Kecelakaan Di Jalan Tol Jakarta-cikampek. MILANG Journal of Mathematics and Its Applications, 15(1), 55-64.

Masuku, F. N., Langi, Y. A., & Mongi, C. (2018). Analisis rantai markov untuk memprediksi perpindahan konsumen maskapai penerbangan rute manado-jakarta. Jurnal Ilmiah Sains, 75-79.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286..

Zucchini, W., & MacDonald, I. L. (2009). Hidden Markov models for time series: an introduction using R. Chapman and Hall/CRC.

Fernandes, A. A. R. (2016). Pemodelan Statistika Pada Analisis Reliabilitas Dan Survival. Universitas Brawijaya Press.

Alyarahma, N. N., Nur'Adilah, S., & Alfaris, M. R. (2022). Prediksi Frekuensi Probabilitas Curah Hujan di Jambi Menggunakan Rantai Markov serta Modul Tree Forecasting Berbantuan Software Qm-V5. Multi Proximity: Jurnal Statistika, 1(2), 82-92.

Hasan, I. (2008). Analisis Data Penelitian Dengan Statistik. Cetakan Ketiga. PT. Bumi Aksara. Jakarta.

Fikri, M., Setiawaty, B., & PURNABA, I. G. (2016). Pendugaan parameter dan kekonvergenan penduga parameter model poisson hidden Markov. MILANG Journal of Mathematics and Its Applications, 15(1), 45-54.

Irawan, A. (2021). Implementasi Poisson Hidden Markov Models & Expectation Maximization Algorithm Untuk Estimasi Kejadian Gempa Bumi Di Indonesia (Studi Kasus: Badan Meteorologi dan Geofisika Daerah Istimewa Yogyakarta).

Laila, A. N. (2021). Analisis model stokastik penularan virus hepatitis B (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim)..

Prabandari, D. (2018). Model Poisson Hidden Markov Dan Penerapannya Pada Klaim Asuransi Kendaraan Bermotor.

Nurhasanah, N., Setiawaty, B., & Bukhari, F. (2016). Pemodelan Poisson Hidden Markov Untuk Prediksi Banyaknya Kecelakaan Di Jalan Tol Jakarta-cikampek. MILANG Journal of Mathematics and Its Applications, 15(1), 55-64.

Author Biographies

Ersya Nurul Fairuz, 3Mathematic Study Program, Faculty of Science and Technology, North Sumatra State Islamic University

Rina Widyasari, Mathematic Study Program, Faculty of Science and Technology, North Sumatra State Islamic University

Rima Aprilia, Mathematic Study Program, Faculty of Science and Technology, North Sumatra State Islamic University

License

Copyright (c) 2024 Ersya Nurul Fairuz, Rina Widyasari, Rima Aprilia

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).