Synthesis of Cellulose from Decorticated Sisal Plants (Agave sisalana) using the Acid Hydrolysis Method
DOI:
10.29303/jpm.v20i3.8099Published:
2025-05-30Issue:
Vol. 20 No. 3 (2025): May 2025Keywords:
Acid Hydrolysis; Alkalization; Decortylation; Nanocellulose; SisalArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Sisal Plant Production Process (Agave sisalana) produces waste of around 95%, which is wasted and can be an environmental problem because it is not processed properly. Sisal decortication waste contains active biochemical compounds, one of which is cellulose, which has the potential to be used in various fields. Cellulose is one of the most widely distributed and abundant biopolymers on Earth, as the main source of renewable materials obtained from plant fibers. Initial Treatment of Fiber Alkalization using 5% NaOH solution (1:20) for 2 hours at a temperature of 80 °C at a speed of 200 rpm. Then the bleaching process(bleaching). Samples of the results of alkalization treatment using hydrogen peroxide solution (H2THE23%) at a temperature of 80 °C for 3 hours, repeated once. In the Acid Hydrolysis process, the resulting sample is bleached with acid using sulfuric acid (H2SO465%) at a temperature of 80 °C for 1 hour (1:20). Sample Characterization Fiber characterization using the NDF test to determine cellulose content. The results of the cellulose content test in sisal fiber decortication waste were 1.545 mg/L Based on the results of the study, nanocellulose with a high % crystallinity was successfully extracted from sisal fiber decortication waste using a chemical treatment method. The FTIR spectrum shows a broad band at 3358-3410 cm-1which is the vibration of the OH group of cellulose. The removal of lignin levels was successfully carried out, showing that the peak of the spectrum band produced was only 1279.26 cm-1. The average size of nanocellulose particles is around 10-30 nm and consists of 30-100 cellulose molecules.
References
S. M. Hejazi, M. Sheikhzadeh, S. M. Abtahi, and A. Zadhoush, “A simple review of soil reinforcement by using natural and synthetic fibers,” May 2012. doi: 10.1016/j.conbuildmat.2011.11.045.
J. Fajrin, “Mechanical Properties of Natural Fiber Composite Made of Indonesian Grown Sisal,” 2016.
Balittas, “Laporan Akuntabilitas Kinerja Balittas 2019,” 2019.
T. Basuki and L. Verona, “Manfaat Serat Sisal (Agave sisalana L.) dan Bambu (Bambusoideae) Untuk Memenuhi Kebutuhan Masyarakat Modern,” 2017.
yoga angangga yogi, garusti, and budi Santoso, “Potensi dan Pemanfaatan Limbah Dekortikasi Tanaman,” Perspektif : Review Penelitian Tanaman Industri, 2021, doi: 10.21082/psp.v20n1.2021.01-10.
C. Yu, “Natural Textile Fibers: Vegetable Fibers,” in Textiles and Fashion: Materials, Design and Technology, Elsevier Inc., 2015, pp. 29–56. doi: 10.1016/B978-1-84569-931-4.00002-7.
V. S. Vilane, P. E. Zwane, M. T. Masarirambi, and J. M. Thwala, “Post-harvest Handling, Storage and Processing of Sisal (Agave sisalana) Fibers in the Hhohho District of Swaziland,” Research Journal of Environmental and Earth Sciences, vol. 6, no. 3, pp. 127–133, Mar. 2014, doi: 10.19026/rjees.6.5751.
L. H. Guimarães de Oliveira et al., “Agave sisalana extract induces cell death in Aedes aegypti hemocytes increasing nitric oxide production,” Asian Pac J Trop Biomed, vol. 6, no. 5, pp. 396–399, May 2016, doi: 10.1016/j.apjtb.2015.12.018.
A. H. Jamil et al., “Potensi Penggunaan Dua Spesies Agave Untuk Pembuatan Pulp dan Kertas Potential of Two Agave Species for Pulp and Paper Making,” 2018, doi: 10.25269/jsel.v8i01.229.
N. Msuya et al., “Characterization of Sisal Boles for Production of Polylactic Acid (PLA),” American Journal of Chemistry, vol. 8, no. 2, pp. 36–40, 2018, doi: 10.5923/j.chemistry.20180802.02.
Y. Xue, Z. Mou, and H. Xiao, “Nanocellulose as a sustainable biomass material: Structure, properties, present status and future prospects in biomedical applications,” Oct. 31, 2017, Royal Society of Chemistry. doi: 10.1039/c7nr04994c.
J. M. Yarbrough et al., “Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels,” ACS Nano, vol. 11, no. 3, pp. 3101–3109, Mar. 2017, doi: 10.1021/acsnano.7b00086.
J. Xiong, Q. Li, Z. Shi, and J. Ye, “Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study,” Food Research International, vol. 100, pp. 858–863, Oct. 2017, doi: 10.1016/j.foodres.2017.07.061.
L. Hetalesi Saputri, R. Sukmawan, H. Santoso Budi Rochardjo, and dan Rochmadi, “Prosiding Seminar Nasional Teknik Kimia ‘Kejuangan’ Isolasi Nano Selulosa dari Ampas Tebu dengan Proses Blending pada Berbagai Variasi Konsentrasi,” Jurusan Teknik Kimia, 2018.
Q. Zhou, H. Brumer, and T. T. Teeri, “Self-organization of Cellulose Nanocrystals Adsorbed with Xyloglucan Oligosaccharide-Poly(ethylene glycol)-Polystyrene Triblock Copolymer,” Macromolecules, vol. 42, pp. 5430–5432, 2012.
M. Ioelovich, “Optimal Conditions for Isolation of Nanocrystalline Cellulose Particles,” Nanoscience and Nanotechnology, vol. 2, no. 2, pp. 9–13, Aug. 2012, doi: 10.5923/j.nn.20120202.03.
R. Xiong, X. Zhang, D. Tian, Z. Zhou, and C. Lu, “Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics,” Cellulose, vol. 19, no. 4, pp. 1189–1198, Aug. 2012, doi: 10.1007/s10570-012-9730-4.
I. Oke and J. Dutcher, “Nanoscience in nature: cellulose nanocrystals,” 2010.
V. Barbash, O. Yashchenko, and A. Kedrovska, “Preparation and Properties of Nanocellulose from Peracetic Flax Pulp,” J Sci Res Rep, vol. 16, no. 1, pp. 1–10, Jan. 2017, doi: 10.9734/jsrr/2017/36571.
C.-P. Chang, ) I-Chen Wang, K.-J. Hung, and Y.-S. Perng, “Preparation and Characterization of Nanocrystalline Cellulose by Acid Hydrolysis of Cotton Linter,” 2010.
X. Li, E. Ding, and G. Li, “A Method of Preparing Spherical Nano-Crystal Cellulose With Mixed Crystalline Forms Of Cellulose I and II,” Chinese Journal of Polymer Science, vol. 19, pp. 291–296, 2001.
M. Armin, J. Mustabi, and A. Asriany, “Kandungan NDF DAN ADF Silase pakan Komplit yang Berbahan Dasar Eceng Gondok (Eichornia Crrassiper) Ddengan lama Fermentasi Berbeda (Content of NDF and ADF Complete Feed Silage Made From Water Hyacinth (Eichornia crassipes) With Different Fermentation Time),” 2021.
W. H. Rukmi et al., “Pengaruh Konsentrasi NaOH DAN H2SO4 Pada Proses Delignifikasi dan Hidrolisis Batang Kayu Kaliandra Terhadap Kenaikan Presentase Perolehan Biothermal Meggunakan Teknologi SHF Secara Kimia,” 2022.
R. Hartono, Jayanuddin, and Salamah, “Pemutihan pulp eceng gondok menggunakan proses ozonasi. Seminar Rekayasa Kimia dan Proses,” pp. 1–5, 2010.
R. S. D. Lestari et al., “Pengaruh Konsentrasi H2O2 Terhadap Tingkat Kecerahan Pulp Dengan Bahan Baku Eceng Gondok Melalui Proses Oorganosol,” 2016. [Online]. Available: http://jurnal.untirta.ac.id/index.php/jip
R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, “Cellulose nanomaterials review: Structure, properties and nanocomposites,” Chem Soc Rev, vol. 40, no. 7, pp. 3941–3994, Jun. 2011, doi: 10.1039/c0cs00108b.
M. A. Pradana, H. Ardhyananta, and M. Farid, “Pemisahan Selulosa dari Lignin Serat Tandan Kosong Kelapa Sawit dengan Proses Alkalisasi untuk Penguat Bahan Komposit Penyerap Suara,” Jurnal Teknik ITS, 2017.
H. Han, Study of agro-composite hemp/polypropylene : treatment of fibers, morphological and mechanical characterization. 2015. [Online]. Available: https://theses.hal.science/tel-03358877v1
L. H. Guimarães de Oliveira et al., “Agave sisalana extract induces cell death in Aedes aegypti hemocytes increasing nitric oxide production,” Asian Pac J Trop Biomed, vol. 6, no. 5, pp. 396–399, May 2016, doi: 10.1016/j.apjtb.2015.12.018.
T. W. Kurniawan, H. Sulistyarti, B. Rumhayati, and A. Sabarudin, “Cellulose Nanocrystals (CNCs) and Cellulose Nanofibers (CNFs) as Adsorbents of Heavy Metal Ions,” 2023, Hindawi Limited. doi: 10.1155/2023/5037027.
Author Biographies
Fauzi Widyawati, Metallurgical Engineering Study Program, Faculty of Environmental and Mineral Technology, Universitas Teknologi Sumbawa
Syamsul Hidayat, Environmental Engineering Study Program, Faculty of Environmental and Mineral Technology, Sumbawa University of Technology, Universitas Teknologi Sumbawa
Aditya Wiradana, 1Metallurgical Engineering Study Program, Faculty of Environmental and Mineral Technology, Universitas Teknologi Sumbawa
Ayunda Kinasih Setyaningtyas, Metallurgical Engineering Study Program, Faculty of Environmental and Mineral Technology, Universitas Teknologi Sumbawa
Syamsul Bahtiar, Metallurgical Engineering Study Program, Faculty of Environmental and Mineral Technology, Universitas Teknologi Sumbawa
Emsal Yanuar, Metallurgical Engineering Study Program, Faculty of Environmental and Mineral Technology, Universitas Teknologi Sumbawa
License
Copyright (c) 2025 Fauzi Widyawati, Syamsul Hidayat, Aditya Wiradana, Ayunda Kinasih Setyaningtyas, Syamsul Bahtiar, Emsal Yanuar

This work is licensed under a Creative Commons Attribution 4.0 International License.
The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.
2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).