Fabrication of Fe3O4/PEG 4000/Oleic Acid Ferrofluids on Crystal Structure and Magnetic Properties Using Rhee Sumbawa Iron Sand

Authors

Syamsul Bahtiar , Izzul Islam , Adella Ulyandana Jayatri , Fauzi Widyawati , Emsal Yanuar

DOI:

10.29303/jpm.v20i1.8108

Published:

2025-01-30

Issue:

Vol. 20 No. 1 (2025): January 2025

Keywords:

Co-presipitation; Ferrofluids; Fe3O4; Iron Sand; Magnetization

Articles

Downloads

How to Cite

Bahtiar, S., Islam, I., Jayatri, A. U., Widyawati, F., & Yanuar, E. (2025). Fabrication of Fe3O4/PEG 4000/Oleic Acid Ferrofluids on Crystal Structure and Magnetic Properties Using Rhee Sumbawa Iron Sand . Jurnal Pijar Mipa, 20(1), 117–122. https://doi.org/10.29303/jpm.v20i1.8108

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The fabrication of ferrofluid using Fe3O4 nanoparticles synthesized from Rhee Sumbawa iron sand has been successfully carried out. This fabrication was conducted to study the crystal structure characteristics and magnetic properties of the ferrofluid from Rhee iron sand. The fabrication used the co-precipitation method at room temperature to synthesise Fe3O4 nanoparticles. In contrast, the ferrofluid fabrication employed a magnetic stirrer with the addition of PEG 4000/Oleic Acid as a surfactant. The structure and magnetic characteristics of the Fe3O4/PEG 4000/AO ferrofluid will be investigated in this work. The results of the XRF characterization show an Fe content of 91.73%, indicating that the purity of Fe has been successfully increased using a permanent magnet separation method. The XRD characterization results show the formation of a cubic crystal system with lattice parameters a=b=c = 9.3797 Å, α=β=γ = 90°, and the crystal size obtained from the refinement is 8.42 nm. The TEM characterization results indicate that the morphology of the nanoparticles is spherical with a particle size of 7.34 nm. The VSM characterization results obtained the ferrofluid magnetization value in the 0.08–0.34 emu/g range.

References

S. Shafiee, H. A. Ahangar, and A. Saffar, “Taguchi method optimization for synthesis of Fe3O4 @chitosan/Tragacanth Gum nanocomposite as a drug delivery system,” Carbohydr. Polym., vol. 222, p. 114982, Oct. 2019, doi: 10.1016/j.carbpol.2019.114982.

A. Taufiq et al., “Synthesis of Fe3O4/Ag nanohybrid ferrofluids and their applications as antimicrobial and antifibrotic agents,” Heliyon, vol. 6, no. 12, p. e05813, Dec. 2020, doi: 10.1016/j.heliyon.2020.e05813.

S. Bahtiar, F. Widyawati, E. Yanuar, R. Ramadhan, K. Zahra, and S. Hidayat, “Preparation of synthesis nanoparticles Fe3O4 based on iron sand Sumbawa,” J. Pijar Mipa, vol. 18, no. 6, pp. 959–963, Nov. 2023, doi: 10.29303/jpm.v18i6.5644.

A. Hefdea and L. Rohmawati, “Sintesis Fe3O4 dari Pasir Mineral Tulungagung Menggunakan Metode Kopresipitasi,” Inov. Fis. Indones., vol. 9, no. 2, pp. 1–4, Jun. 2020, doi: 10.26740/ifi.v9n2.p1-4.

Muzammil et al., “Effect of Template on Structural and Band Gap Behaviors of Magnetite Nanoparticles,” J. Phys. Conf. Ser., vol. 1093, p. 012020, Sep. 2018, doi: 10.1088/1742-6596/1093/1/012020.

A. Taufiq et al., “Fabrication of Mn1Zn Fe2O4 ferrofluids from natural sand for magnetic sensors and radar absorbing materials,” Heliyon, vol. 6, no. 7, p. e04577, Jul. 2020, doi: 10.1016/j.heliyon.2020.e04577.

S. Bahtiar et al., “Synthesis, Investigation on Structural and Magnetic Behaviors of Spinel M-Ferrite [M = Fe; Zn; Mn] Nanoparticles from Iron Sand,” IOP Conf. Ser. Mater. Sci. Eng., vol. 202, p. 012052, May 2017, doi: 10.1088/1757-899X/202/1/012052.

I. Nkurikiyimfura, Y. Wang, B. Safari, and E. Nshingabigwi, “Temperature-dependent magnetic properties of magnetite nanoparticles synthesized via coprecipitation method,” J. Alloys Compd., vol. 846, p. 156344, Dec. 2020, doi: 10.1016/j.jallcom.2020.156344.

R. F. Wulandari, D. Paradita, N. Mufti, M. T. H. Abadi, A. Taufiq, and M. Mujamilah, “Fe3O4 Nanoparticles Prepared by Coprecipitations Method for Hyperthermia Therapy,” Key Eng. Mater., vol. 940, pp. 73–80, Jan. 2023, doi: 10.4028/p-jh6d31.

G. Fosa, R. Bădescu, G. Călugăru, and V. Bădescu, “Measuring the transmittivity of light: A tool for testing the quality of magnetic liquids,” Opt. Mater., vol. 28, no. 4, pp. 461–465, Mar. 2006, doi: 10.1016/j.optmat.2005.03.010.

K. Abbas, X. Wang, G. Rasool, T. Sun, G. Yin, and I. Razzaq, “Recent developments in the application of ferrofluids with an emphasis on thermal performance and energy harvesting,” J. Magn. Magn. Mater., vol. 587, p. 171311, Dec. 2023, doi: 10.1016/j.jmmm.2023.171311.

A. Kulandaivel et al., “Advances in ferrofluid-based triboelectric nanogenerators: Design, performance, and prospects for energy harvesting applications,” Nano Energy, vol. 120, p. 109110, Feb. 2024, doi: 10.1016/j.nanoen.2023.109110.

S. Sarvar, S. Rashidi, and R. Rafee, “A brief review of the application of ferrofluids and magnetic fields in solar energy systems,” J. Magn. Magn. Mater., vol. 588, p. 171435, Dec. 2023, doi: 10.1016/j.jmmm.2023.171435.

F. E. L. Ossege, R. G. Gontijo, and A. S. De Paula, “Dynamical analysis of a ferrofluid subjected to oscillatory field and shear rates: Applications to magnetic hyperthermia,” J. Magn. Magn. Mater., vol. 596, p. 171936, Apr. 2024, doi: 10.1016/j.jmmm.2024.171936.

G. Salmanian, S. A. Hassanzadeh-Tabrizi, and N. Koupaei, “Magnetic chitosan nanocomposites for simultaneous hyperthermia and drug delivery applications: A review,” Int. J. Biol. Macromol., vol. 184, pp. 618–635, Aug. 2021, doi: 10.1016/j.ijbiomac.2021.06.108.

J. Jiao, H. Zhang, and J. Zheng, “Ferrofluids transport in bioinspired nanochannels: Application to electrochemical biosensing with magnetic-controlled detection,” Biosens. Bioelectron., vol. 201, p. 113963, Apr. 2022, doi: 10.1016/j.bios.2022.113963.

G. Antarnusa, P. D. Jayanti, Y. R. Denny, and A. Suherman, “Utilization of co-precipitation method on synthesis of Fe3O4/PEG with different concentrations of PEG for biosensor applications,” Materialia, vol. 25, p. 101525, Sep. 2022, doi: 10.1016/j.mtla.2022.101525.

M. Victory, R. P. Pant, and S. Phanjoubam, “Synthesis and characterization of oleic acid coated Fe–Mn ferrite based ferrofluid,” Mater. Chem. Phys., vol. 240, p. 122210, Jan. 2020, doi: 10.1016/j.matchemphys.2019.122210.

O. Oehlsen, S. I. Cervantes-Ramírez, P. Cervantes-Avilés, and I. A. Medina-Velo, “Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives,” ACS Omega, vol. 7, no. 4, pp. 3134–3150, Feb. 2022, doi: 10.1021/acsomega.1c05631.

G. D. Tatinting, H. F. Aritonang, and A. D. Wuntu, “SINTESIS NANOPARTIKEL Fe3O4–POLIETILEN GLIKOL (PEG) 6000 DARI PASIR BESI PANTAI HAIS SEBAGAI ADSORBEN LOGAM KADMIUM (Cd),” Chem. Prog., vol. 14, no. 2, p. 131, Nov. 2021, doi: 10.35799/cp.14.2.2021.37192.

S. Sunaryono and I. Sugihartono, “PEMISAHAN SENYAWA TITANOMAGNETITE Fe3-xTixO4(o

I. A. Alghifari, T. A. R. Putra, and M. E. R. Karmel, “Peningkatan Konsentrasi Besi (Fe) Dalam Endapan Pasir Besi Menggunakan Magnetic Separator di Pantai Leungah, Kabupaten Aceh Besar,” PRISMA Fis., vol. 12, no. 03, 2024.

S. Bahtiar, A. Taufiq, J. Utomo, N. Hidayat, and Sunaryono, “Structural Characterizations of Magnetite/Zinc Oxide Nanocomposites Prepared by Co-precipitation Method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 515, p. 012076, Apr. 2019, doi: 10.1088/1757-899X/515/1/012076.

S. Mustapha et al., “Facile synthesis and characterization of TiO2 nanoparticles: X-ray peak profile analysis using Williamson–Hall and Debye–Scherrer methods,” Int. Nano Lett., vol. 11, no. 3, pp. 241–261, Sep. 2021, doi: 10.1007/s40089-021-00338-w.

T. Guo, X. Bian, and C. Yang, “A new method to prepare water based Fe3O4 ferrofluid with high stabilization,” Phys. Stat. Mech. Its Appl., vol. 438, pp. 560–567, Nov. 2015, doi: 10.1016/j.physa.2015.06.035.

A. Taufiq et al., “Excellent antimicrobial performance of co-doped magnetite double-layered ferrofluids fabricated from natural sand,” J. King Saud Univ. - Sci., vol. 32, no. 7, pp. 3032–3038, Oct. 2020, doi: 10.1016/j.jksus.2020.08.009.

A. Taufiq et al., “Structural, Magnetic, Optical and Antibacterial Properties of Magnetite Ferrofluids with PEG-20000 Template,” Mater. Today Proc., vol. 17, pp. 1728–1735, 2019, doi: 10.1016/j.matpr.2019.06.204.

S. Khoee and A. Kavand, “A new procedure for preparation of polyethylene glycol-grafted magnetic iron oxide nanoparticles,” J. Nanostructure Chem., vol. 4, no. 3, p. 111, Sep. 2014, doi: 10.1007/s40097-014-0111-4.

Author Biographies

Syamsul Bahtiar, 1Department of Mettalurgy, Faculty of minerals and environment technology, Sumbawa University of Technology

Izzul Islam, Department of Biotecnology, Faculty of lifescience of technology, Sumbawa University of Technologi, Jl. Raya olat maras, Sumbawa, 84371, Indonesia

Adella Ulyandana Jayatri, Department of Physics, Faculty of Mathematics and Natural Sciences ,university of mataram, Jl. Majapahit No.62, Gomong, Kec. Selaparang Mataram, West Nusa Tenggara, Indonesia

Fauzi Widyawati, 1Department of Mettalurgy, Faculty of minerals and environment technology, Sumbawa University of Technologi

Emsal Yanuar, Department of Mettalurgy, Faculty of minerals and environment technology, Sumbawa University of Technologi, Jl. Raya olat maras, Sumbawa, 84371, Indonesia.

License

Copyright (c) 2025 Syamsul Bahtiar, Izzul Islam, Adella Ulyandana Jayatri, Fauzi Widyawati, Emsal Yanuar

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).