The efficiency of the Heterogeneous Photo-Fenton Process for Methyl Orange Degradation: A Review

Authors

Rani Fatmawati , Indang Dewata , Edi Nasra , Romy Dwipa Yamesa Away

DOI:

10.29303/jpm.v20i2.8606

Published:

2025-03-25

Issue:

Vol. 20 No. 2 (2025): March 2025 - in Progress

Keywords:

Degradation; Heterogeneous Catalyst; Methyl Orange; Photo-Fenton

Articles

Downloads

How to Cite

Fatmawati, R., Dewata, I., Nasra, E., & Away, R. D. Y. (2025). The efficiency of the Heterogeneous Photo-Fenton Process for Methyl Orange Degradation: A Review. Jurnal Pijar Mipa, 20(2), 325–333. https://doi.org/10.29303/jpm.v20i2.8606

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Methyl orange dye is an organic pollutant often found in textile industry waste and harms the environment due to its nature, which makes it difficult to decompose naturally. One method that has attracted attention in its processing is the Photo-Fenton process, which utilizes hydroxyl radicals (•OH) as powerful degradation agents. This article summarizes recent developments in applying heterogeneous Photo-Fenton to Methyl Orange degradation, focusing on degradation efficiency, factors influencing reactions, and degradation pathways. This study discusses the influence of reaction parameters such as initial pH, H₂O₂ concentration, catalyst concentration and light intensity on the degradation rate. In addition, various types of heterogeneous catalysts, including metal oxide-based and ferrous composites, were analyzed based on their effectiveness and stability in the Photo-Fenton system. The Methyl Orange degradation pathway is proposed based on an intermediate product identified in previous studies, suggesting that the reaction proceeds through a gradual oxidation mechanism until simpler and more environmentally friendly compounds are formed. The results of this study show that the heterogeneous Photo-Fenton system provides advantages over homogeneous systems, especially in increasing degradation efficiency and prolonging the catalyst reactivity cycle. The use of heterogeneous catalysts allows for the formation of larger numbers of active species, thus accelerating the breaking of the Methyl Orange structure. In addition, further research is needed to improve the stability of the catalyst, optimize reaction conditions, and evaluate its potential application on an industrial scale. This study will be a reference for developing a more efficient and sustainable Photo-Fenton-based waste treatment method.

References

T. H. V. Luong, T. H. T. Nguyen, B. V. Nguyen, N. K. Nguyen, T. Q. C. Nguyen, and G. H. Dang, “Efficient degradation of methyl orange and methylene blue in aqueous solution using a novel Fenton-like catalyst of CuCo-ZIFs,” Green Processing and Synthesis, vol. 11, no. 1, pp. 71–83, Jan. 2022, doi: 10.1515/gps-2022-0006.

S. Benkhaya, S. M’rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Jan. 01, 2020, Elsevier Ltd. doi: 10.1016/j.heliyon.2020.e03271.

Indang Dewata and Yun Hendri Danhas, “Pencemaran Lingkungan,” Publisher : PT. RajaGrafindo Persada - Rajawali Pers, 2023.

M. Farhan Hanafi and N. Sapawe, “A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes,” Mater Today Proc, vol. 31, pp. A141–A150, Jan. 2020, doi: 10.1016/J.MATPR.2021.01.258.

A. Ibrahim, E. M. El-Fakharany, M. M. Abu-Serie, M. F. Elkady, and M. Eltarahony, “Methyl Orange Biodegradation by Immobilized Consortium Microspheres: Experimental Design Approach, Toxicity Study and Bioaugmentation Potential,” Biology (Basel), vol. 11, no. 1, Jan. 2022, doi: 10.3390/biology11010076.

A. Aljuaid et al., “g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives,” Apr. 01, 2023, MDPI. doi: 10.3390/molecules28073199.

A. El Shahawy, R. H. Mohamadien, E. M. El-Fawal, Y. M. Moustafa, and M. M. K. Dawood, “Hybrid Photo-Fenton oxidation and biosorption for petroleum wastewater treatment and optimization using Box–Behnken Design,” Environ Technol Innov, vol. 24, Nov. 2021, doi: 10.1016/j.eti.2021.101834.

E. C. Lumbaque, “Degradation of pharmaceuticals in hospital wastewater by solar photo-Fenton processes,” Porto Alegre, Nov. 2020.

Y. San juan-Garisado et al., “Optimization of the Photo-Fenton process for the effective removal of chemical oxygen demand and phenols in portable toilet wastewater: A treatment study under real world conditions,” Heliyon, vol. 10, no. 15, Aug. 2024, doi: 10.1016/j.heliyon.2024.e35286.

M. A. R. Hamed, H. M. Hussein, and K. Elmaadawy, “Radiant Remedies – Maximizing Wastewater Treatment Efficiency with Optimized Photo-Fenton Techniques,” Journal of Ecological Engineering, vol. 25, no. 12, pp. 324–332, 2024, doi: 10.12911/22998993/194957.

J. P. Ribeiro, H. G. M. F. Gomes, L. Sarinho, C. C. Marques, and M. I. Nunes, “Synergies of metallic catalysts in the Fenton and photo-Fenton processes applied to the treatment of pulp bleaching wastewater,” Chemical Engineering and Processing - Process Intensification, vol. 181, Nov. 2022, doi: 10.1016/j.cep.2022.109159.

N. Welter, J. Leichtweis, S. Silvestri, P. I. Z. Sánchez, A. C. C. Mejía, and E. Carissimi, “Preparation of a new green composite based on chitin biochar and ZnFe2O4 for photo-Fenton degradation of Rhodamine B,” J Alloys Compd, vol. 901, p. 163758, Apr. 2022, doi: 10.1016/J.JALLCOM.2022.163758.

Y. Gou et al., “Degradation of fluoroquinolones in homogeneous and heterogeneous photo-Fenton processes: A review,” May 01, 2021, Elsevier Ltd. doi: 10.1016/j.chemosphere.2020.129481.

J. Feng and Y. Zhang, “Ascorbic acid enchanced CuFe2O4-catalyzed heterogeneous photo-fenton-like degradation of phenol,” Journal of environmental chemichal engiineering, 2023, doi: https://doi.org/10.1016/j.jece.2023.111009.

M. J. Dianat, F. Esmaeilzadeh, F. Kazemi, and A. Zandifar, “Bimetal iron and manganese codoped SBA-16 catalyst: an efficient approach for dye removal through fenton-like reaction,” International Journal of Environmental Science and Technology, 2024, doi: 10.1007/s13762-024-05925-w.

M. D. Permana, T. Takei, A. A. Khatun, D. R. Eddy, N. Saito, and N. Kumada, “Effect of wavelength in light irradiation for Fe2+/Fe3+ redox cycle of Fe3O4/g-C3N4 in photocatalysis and photo-Fenton systems,” J Photochem Photobiol A Chem, Jul. 2024, doi: DOI:10.1016/j.jphotochem.2024.115876.

N. Pourshirband and A. Nezamzadeh-Ejhieh, “An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: Focus on the scavenging agent and mechanism,” J Mol Liq, vol. 335, Aug. 2021, doi: 10.1016/j.molliq.2021.116543.

F. Cheng et al., “Graphene oxide mediated Fe(III) reduction for enhancing Fe(III)/H2O2 Fenton and photo-Fenton oxidation toward chloramphenicol degradation,” Science of The Total Environment, vol. 797, p. 149097, Nov. 2021, doi: 10.1016/J.SCITOTENV.2021.149097.

W. Song et al., “A feasible approach for azo-dye methyl orange degradation in siderite/H2O2 assisted by persulfate: Optimization using response surface methodology and pathway,” J Environ Manage, vol. 308, p. 114397, Apr. 2022, doi: 10.1016/J.JENVMAN.2021.114397.

A. Deb, J. Rumky, and M. Sillanpää, “Chapter 8 Fenton, Photo-Fenton, and Electro-Fenton systems for micro-pollutant treatment processes,” 2023.

C. Wang, X. Kong, Z. Yu, X. Tao, L. Huang, and S. Shang, “Construction of g-C3N4/Fe-MOFs Type-Ⅱ heterojunction promotes photo-Fenton degradation of doxycycline,” Sep Purif Technol, vol. 326, Dec. 2023, doi: 10.1016/j.seppur.2023.124790.

Y. Li et al., “Construction of g-C3N4/PDI@MOF heterojunctions for the highly efficient visible light-driven degradation of pharmaceutical and phenolic micropollutants,” Appl Catal B, vol. 250, pp. 150–162, Aug. 2019, doi: 10.1016/J.APCATB.2019.03.024.

C. Wang, X. Kong, Z. Yu, X. Tao, L. Huang, and S. Shang, “Construction of g-C3N4/Fe-MOFs Type-Ⅱ heterojunction promotes photo-Fenton degradation of doxycycline,” Sep Purif Technol, vol. 326, Dec. 2023, doi: 10.1016/j.seppur.2023.124790.

G. Q. Huang, G. J. Qi, T. Y. Gao, J. Zhang, and Y. H. Zhao, “Fe-pillared montmorillonite as effective heterogeneous Fenton catalyst for the decolorization of methyl orange,” Journal of Chemical Sciences, vol. 132, no. 1, Dec. 2020, doi: 10.1007/s12039-020-01820-2.

X. Zhang, J. Dong, Z. Hao, W. Cai, and F. Wang, “Fe–Mn/MCM-41: Preparation, Characterization, and Catalytic Activity for Methyl Orange in the Process of Heterogeneous Fenton Reaction,” Transactions of Tianjin University, vol. 24, no. 4, pp. 361–369, Jul. 2018, doi: 10.1007/s12209-018-0122-1.

M. E. M. Ali, T. A. Gad-Allah, E. S. Elmolla, and M. I. Badawy, “Heterogeneous fenton process using iron-containing waste (ICW) for methyl orange degradation: Process performance and modeling,” Desalination Water Treat, vol. 52, no. 22–24, pp. 4538–4546, 2014, doi: 10.1080/19443994.2013.803320.

I. Muthuvel et al., “Graphene oxide–Fe2V4O13 hybrid material as highly efficient hetero-Fenton catalyst for degradation of methyl orange,” International Journal of Industrial Chemistry, vol. 10, no. 1, pp. 77–87, Mar. 2019, doi: 10.1007/s40090-019-0173-8.

I. Carra, J. A. Sánchez Pérez, S. Malato, O. Autin, B. Jefferson, and P. Jarvis, “Application of high intensity UVC-LED for the removal of acetamiprid with the photo-Fenton process,” Chemical Engineering Journal, vol. 264, pp. 690–696, Mar. 2015, doi: 10.1016/J.CEJ.2014.11.142.

C. Du et al., “Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: A review,” Chemical Engineering Journal, vol. 431, p. 133932, Mar. 2022, doi: 10.1016/J.CEJ.2021.133932.

H. Yi et al., “Efficient antibiotics removal via the synergistic effect of manganese ferrite and MoS2,” Chemosphere, vol. 288, p. 132494, Feb. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.132494.

P. Mahamallik and A. Pal, “Photo-Fenton process in Co(II)-adsorbed admicellar soft-template on alumina support for methyl orange degradation,” Catal Today, vol. 348, pp. 212–222, May 2020, doi: 10.1016/j.cattod.2019.07.045.

Y. Cheng et al., “Review on spinel ferrites-based materials (MFe2O4) as photo-Fenton catalysts for degradation of organic pollutants,” Aug. 01, 2023, Elsevier B.V. doi: 10.1016/j.seppur.2023.123971.

S. Lu, L. Liu, H. Demissie, G. An, and D. Wang, “Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review,” Jan. 01, 2021, Elsevier Ltd. doi: 10.1016/j.envint.2020.106273.

G. S. Parkinson, “Iron oxide surfaces,” Surf Sci Rep, vol. 71, no. 1, pp. 272–365, Mar. 2016, doi: 10.1016/J.SURFREP.2016.02.001.

Y. Al-Abdallat, I. Jum’h, A. Al Bsoul, R. Jumah, and A. Telfah, “Photocatalytic Degradation Dynamics of Methyl Orange Using Coprecipitation Synthesized Fe3O4 Nanoparticles,” Water Air Soil Pollut, vol. 230, no. 12, Dec. 2019, doi: 10.1007/s11270-019-4310-y.

H. Xiang, G. Ren, X. Yang, D. Xu, Z. Zhang, and X. Wang, “A low-cost solvent-free method to synthesize α-Fe2O3 nanoparticles with applications to degrade methyl orange in photo-fenton system,” Ecotoxicol Environ Saf, vol. 200, Sep. 2020, doi: https://doi.org/10.1016/j.ecoenv.2020.110744.

A. M. Domacena, C. L. Aquino, and M. D. Balela, “Photo-Fenton Degradation of Methyl Orange Using Hematite (α-Fe2O3) of Various Morphologies,” Mater Today Proc, 2019, doi: https://doi.org/10.1016/j.matpr.2019.08.095.

M. E. Hassan, Y. Chen, Liu Guanglong, and D. Zhu, “Heterogeneous photo-Fenton degradation of methyl orange by Fe2O3/TiO2 nanoparticles under visible light,” Journal of Water Process Engineering, 2016, doi: DOI:10.1016/j.jwpe.2016.05.014.

H. Rasouli, M. Khodabakhshi, and M. Ghorbanpour, “Decolorization of methyl orange dye by photo-Fenton process using silica gel/iron oxide catalyst,” Desalination Water Treat, Dec. 2022, doi: DOI:10.5004/dwt.2022.28919.

A. L. Butt, J. K. Mpinga, and S. M. Tichapondwa, “Photo-fenton oxidation of methyl orange dye using south african ilmenite sands as a catalyst,” Catalysts, vol. 11, no. 12, Dec. 2021, doi: 10.3390/catal11121452.

J. Leichtweis, N. Welter, Y. Vieira, S. Silvestri, and E. Carissimi, “Use of the CuFe2O4/biochar composite to remove methylene blue, methyl orange and tartrazine dyes from wastewater using photo-Fenton process,” Environ Monit Assess, vol. 194, no. 12, Dec. 2022, doi: 10.1007/s10661-022-10633-4.

A. Omri, W. Hamza, and M. Benzina, “Photo-Fenton oxidation and mineralization of methyl orange using Fe-sand as effective heterogeneous catalyst,” Journal Of Photochemistry & Photobiologi A : Chemistry, 2020, doi: https://doi.org/10.1016/j.jphotochem.2020.112444.

Z. Wang, Y. Li, X. Xie, and Z. Wang, “Bifunctional MnFe2O4/chitosan modified biochar composite for enhanced methyl orange removal based on adsorption and photo-Fenton process,” Colloids Surf A Physicochem Eng Asp, 2021, doi: https://doi.org/10.1016/j.colsurfa.2020.126104.

N. Dai, Y. Shuang, X. Zhang, and L. Feng, “Typical synthesis of an iron-modified Laponite @diatomite composite for photo-Fenton degradation of methyl orange dyes,” Appl Surf Sci, Sep. 2022, doi: DOI:10.1016/j.apsusc.2022.154886.

M. S. Vasilyeva et al., “Degradation of methyl orange in heterogeneous photo-Fenton reaction over V (IV)-containing oxide-phosphate coatings formed on titanium by plasma electrolytic oxidation,” Surf Coat Technol, 2021, doi: https://doi.org/10.1016/j.surfcoat.2021.126898.

C. Jaramillo-Páez, J. A. Navío, M. C. Hidalgo, A. Bouziani, and M. El Azzouzi, “Mixed α-Fe2O3/Bi2WO6 oxides for photoassisted hetero-Fenton degradation of Methyl Orange and Phenol,” J Photochem Photobiol A Chem, vol. 332, pp. 521–533, Jan. 2017, doi: 10.1016/j.jphotochem.2016.09.031.

N. Mukwevho, P. J. Mafa, K. K. Kefeni, A. K. Mishra, S. B. Mishra, and A. T. Kuvarega, “Photo-Fenton like reaction for the degradation of methyl orange using magnetically retrievable NiFe2O4/CoMoS4 heterojunction photocatalyst,” Journal of Water Process Engineering, vol. 65, Aug. 2024, doi: 10.1016/j.jwpe.2024.105882.

X. T. Wang, Y. Li, X. Q. Zhang, J. F. Li, Y. N. Luo, and C. W. Wang, “Fabrication of a magnetically separable Cu 2 ZnSnS 4 /ZnFe 2 O 4 p-n heterostructured nano-photocatalyst for synergistic enhancement of photocatalytic activity combining with photo-Fenton reaction,” Appl Surf Sci, vol. 479, pp. 86–95, Jun. 2019, doi: 10.1016/j.apsusc.2019.02.045.

M. J. Baruah, R. Dutta, M. E. A. Zaki, and K. K. Bania, “Heterogeneous Iron-Based Catalysts for Organic Transformation Reactions: A Brief Overview,” Jul. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/molecules29133177.

S. Rahim Pouran, A. A. Abdul Raman, and W. M. A. Wan Daud, “Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions,” Feb. 01, 2014. doi: 10.1016/j.jclepro.2013.09.013.

Q. Feng et al., “Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation,” J Alloys Compd, vol. 737, pp. 197–206, Mar. 2018, doi: 10.1016/J.JALLCOM.2017.12.070.

T. H. V. Luong, T. H. T. Nguyen, B. V. Nguyen, N. K. Nguyen, T. Q. C. Nguyen, and G. H. Dang, “Efficient degradation of methyl orange and methylene blue in aqueous solution using a novel Fenton-like catalyst of CuCo-ZIFs,” Green Processing and Synthesis, vol. 11, no. 1, pp. 71–83, Jan. 2022, doi: 10.1515/gps-2022-0006.

S. Benkhaya, S. M’rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Jan. 01, 2020, Elsevier Ltd. doi: 10.1016/j.heliyon.2020.e03271.

Indang Dewata and Yun Hendri Danhas, “Pencemaran Lingkungan,” Publisher : PT. RajaGrafindo Persada - Rajawali Pers, 2023.

M. Farhan Hanafi and N. Sapawe, “A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes,” Mater Today Proc, vol. 31, pp. A141–A150, Jan. 2020, doi: 10.1016/J.MATPR.2021.01.258.

A. Ibrahim, E. M. El-Fakharany, M. M. Abu-Serie, M. F. Elkady, and M. Eltarahony, “Methyl Orange Biodegradation by Immobilized Consortium Microspheres: Experimental Design Approach, Toxicity Study and Bioaugmentation Potential,” Biology (Basel), vol. 11, no. 1, Jan. 2022, doi: 10.3390/biology11010076.

A. Aljuaid et al., “g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives,” Apr. 01, 2023, MDPI. doi: 10.3390/molecules28073199.

A. El Shahawy, R. H. Mohamadien, E. M. El-Fawal, Y. M. Moustafa, and M. M. K. Dawood, “Hybrid Photo-Fenton oxidation and biosorption for petroleum wastewater treatment and optimization using Box–Behnken Design,” Environ Technol Innov, vol. 24, Nov. 2021, doi: 10.1016/j.eti.2021.101834.

E. C. Lumbaque, “Degradation of pharmaceuticals in hospital wastewater by solar photo-Fenton processes,” Porto Alegre, Nov. 2020.

Y. San juan-Garisado et al., “Optimization of the Photo-Fenton process for the effective removal of chemical oxygen demand and phenols in portable toilet wastewater: A treatment study under real world conditions,” Heliyon, vol. 10, no. 15, Aug. 2024, doi: 10.1016/j.heliyon.2024.e35286.

M. A. R. Hamed, H. M. Hussein, and K. Elmaadawy, “Radiant Remedies – Maximizing Wastewater Treatment Efficiency with Optimized Photo-Fenton Techniques,” Journal of Ecological Engineering, vol. 25, no. 12, pp. 324–332, 2024, doi: 10.12911/22998993/194957.

J. P. Ribeiro, H. G. M. F. Gomes, L. Sarinho, C. C. Marques, and M. I. Nunes, “Synergies of metallic catalysts in the Fenton and photo-Fenton processes applied to the treatment of pulp bleaching wastewater,” Chemical Engineering and Processing - Process Intensification, vol. 181, Nov. 2022, doi: 10.1016/j.cep.2022.109159.

N. Welter, J. Leichtweis, S. Silvestri, P. I. Z. Sánchez, A. C. C. Mejía, and E. Carissimi, “Preparation of a new green composite based on chitin biochar and ZnFe2O4 for photo-Fenton degradation of Rhodamine B,” J Alloys Compd, vol. 901, p. 163758, Apr. 2022, doi: 10.1016/J.JALLCOM.2022.163758.

Y. Gou et al., “Degradation of fluoroquinolones in homogeneous and heterogeneous photo-Fenton processes: A review,” May 01, 2021, Elsevier Ltd. doi: 10.1016/j.chemosphere.2020.129481.

J. Feng and Y. Zhang, “Ascorbic acid enchanced CuFe2O4-catalyzed heterogeneous photo-fenton-like degradation of phenol,” Journal of environmental chemichal engiineering, 2023, doi: https://doi.org/10.1016/j.jece.2023.111009.

M. J. Dianat, F. Esmaeilzadeh, F. Kazemi, and A. Zandifar, “Bimetal iron and manganese codoped SBA-16 catalyst: an efficient approach for dye removal through fenton-like reaction,” International Journal of Environmental Science and Technology, 2024, doi: 10.1007/s13762-024-05925-w.

M. D. Permana, T. Takei, A. A. Khatun, D. R. Eddy, N. Saito, and N. Kumada, “Effect of wavelength in light irradiation for Fe2+/Fe3+ redox cycle of Fe3O4/g-C3N4 in photocatalysis and photo-Fenton systems,” J Photochem Photobiol A Chem, Jul. 2024, doi: DOI:10.1016/j.jphotochem.2024.115876.

N. Pourshirband and A. Nezamzadeh-Ejhieh, “An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: Focus on the scavenging agent and mechanism,” J Mol Liq, vol. 335, Aug. 2021, doi: 10.1016/j.molliq.2021.116543.

F. Cheng et al., “Graphene oxide mediated Fe(III) reduction for enhancing Fe(III)/H2O2 Fenton and photo-Fenton oxidation toward chloramphenicol degradation,” Science of The Total Environment, vol. 797, p. 149097, Nov. 2021, doi: 10.1016/J.SCITOTENV.2021.149097.

W. Song et al., “A feasible approach for azo-dye methyl orange degradation in siderite/H2O2 assisted by persulfate: Optimization using response surface methodology and pathway,” J Environ Manage, vol. 308, p. 114397, Apr. 2022, doi: 10.1016/J.JENVMAN.2021.114397.

A. Deb, J. Rumky, and M. Sillanpää, “Chapter 8 Fenton, Photo-Fenton, and Electro-Fenton systems for micro-pollutant treatment processes,” 2023.

C. Wang, X. Kong, Z. Yu, X. Tao, L. Huang, and S. Shang, “Construction of g-C3N4/Fe-MOFs Type-Ⅱ heterojunction promotes photo-Fenton degradation of doxycycline,” Sep Purif Technol, vol. 326, Dec. 2023, doi: 10.1016/j.seppur.2023.124790.

Y. Li et al., “Construction of g-C3N4/PDI@MOF heterojunctions for the highly efficient visible light-driven degradation of pharmaceutical and phenolic micropollutants,” Appl Catal B, vol. 250, pp. 150–162, Aug. 2019, doi: 10.1016/J.APCATB.2019.03.024.

C. Wang, X. Kong, Z. Yu, X. Tao, L. Huang, and S. Shang, “Construction of g-C3N4/Fe-MOFs Type-Ⅱ heterojunction promotes photo-Fenton degradation of doxycycline,” Sep Purif Technol, vol. 326, Dec. 2023, doi: 10.1016/j.seppur.2023.124790.

G. Q. Huang, G. J. Qi, T. Y. Gao, J. Zhang, and Y. H. Zhao, “Fe-pillared montmorillonite as effective heterogeneous Fenton catalyst for the decolorization of methyl orange,” Journal of Chemical Sciences, vol. 132, no. 1, Dec. 2020, doi: 10.1007/s12039-020-01820-2.

X. Zhang, J. Dong, Z. Hao, W. Cai, and F. Wang, “Fe–Mn/MCM-41: Preparation, Characterization, and Catalytic Activity for Methyl Orange in the Process of Heterogeneous Fenton Reaction,” Transactions of Tianjin University, vol. 24, no. 4, pp. 361–369, Jul. 2018, doi: 10.1007/s12209-018-0122-1.

M. E. M. Ali, T. A. Gad-Allah, E. S. Elmolla, and M. I. Badawy, “Heterogeneous fenton process using iron-containing waste (ICW) for methyl orange degradation: Process performance and modeling,” Desalination Water Treat, vol. 52, no. 22–24, pp. 4538–4546, 2014, doi: 10.1080/19443994.2013.803320.

I. Muthuvel et al., “Graphene oxide–Fe2V4O13 hybrid material as highly efficient hetero-Fenton catalyst for degradation of methyl orange,” International Journal of Industrial Chemistry, vol. 10, no. 1, pp. 77–87, Mar. 2019, doi: 10.1007/s40090-019-0173-8.

I. Carra, J. A. Sánchez Pérez, S. Malato, O. Autin, B. Jefferson, and P. Jarvis, “Application of high intensity UVC-LED for the removal of acetamiprid with the photo-Fenton process,” Chemical Engineering Journal, vol. 264, pp. 690–696, Mar. 2015, doi: 10.1016/J.CEJ.2014.11.142.

C. Du et al., “Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: A review,” Chemical Engineering Journal, vol. 431, p. 133932, Mar. 2022, doi: 10.1016/J.CEJ.2021.133932.

H. Yi et al., “Efficient antibiotics removal via the synergistic effect of manganese ferrite and MoS2,” Chemosphere, vol. 288, p. 132494, Feb. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.132494.

P. Mahamallik and A. Pal, “Photo-Fenton process in Co(II)-adsorbed admicellar soft-template on alumina support for methyl orange degradation,” Catal Today, vol. 348, pp. 212–222, May 2020, doi: 10.1016/j.cattod.2019.07.045.

Y. Cheng et al., “Review on spinel ferrites-based materials (MFe2O4) as photo-Fenton catalysts for degradation of organic pollutants,” Aug. 01, 2023, Elsevier B.V. doi: 10.1016/j.seppur.2023.123971.

S. Lu, L. Liu, H. Demissie, G. An, and D. Wang, “Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review,” Jan. 01, 2021, Elsevier Ltd. doi: 10.1016/j.envint.2020.106273.

G. S. Parkinson, “Iron oxide surfaces,” Surf Sci Rep, vol. 71, no. 1, pp. 272–365, Mar. 2016, doi: 10.1016/J.SURFREP.2016.02.001.

Y. Al-Abdallat, I. Jum’h, A. Al Bsoul, R. Jumah, and A. Telfah, “Photocatalytic Degradation Dynamics of Methyl Orange Using Coprecipitation Synthesized Fe3O4 Nanoparticles,” Water Air Soil Pollut, vol. 230, no. 12, Dec. 2019, doi: 10.1007/s11270-019-4310-y.

H. Xiang, G. Ren, X. Yang, D. Xu, Z. Zhang, and X. Wang, “A low-cost solvent-free method to synthesize α-Fe2O3 nanoparticles with applications to degrade methyl orange in photo-fenton system,” Ecotoxicol Environ Saf, vol. 200, Sep. 2020, doi: https://doi.org/10.1016/j.ecoenv.2020.110744.

A. M. Domacena, C. L. Aquino, and M. D. Balela, “Photo-Fenton Degradation of Methyl Orange Using Hematite (α-Fe2O3) of Various Morphologies,” Mater Today Proc, 2019, doi: https://doi.org/10.1016/j.matpr.2019.08.095.

M. E. Hassan, Y. Chen, Liu Guanglong, and D. Zhu, “Heterogeneous photo-Fenton degradation of methyl orange by Fe2O3/TiO2 nanoparticles under visible light,” Journal of Water Process Engineering, 2016, doi: DOI:10.1016/j.jwpe.2016.05.014.

H. Rasouli, M. Khodabakhshi, and M. Ghorbanpour, “Decolorization of methyl orange dye by photo-Fenton process using silica gel/iron oxide catalyst,” Desalination Water Treat, Dec. 2022, doi: DOI:10.5004/dwt.2022.28919.

A. L. Butt, J. K. Mpinga, and S. M. Tichapondwa, “Photo-fenton oxidation of methyl orange dye using south african ilmenite sands as a catalyst,” Catalysts, vol. 11, no. 12, Dec. 2021, doi: 10.3390/catal11121452.

J. Leichtweis, N. Welter, Y. Vieira, S. Silvestri, and E. Carissimi, “Use of the CuFe2O4/biochar composite to remove methylene blue, methyl orange and tartrazine dyes from wastewater using photo-Fenton process,” Environ Monit Assess, vol. 194, no. 12, Dec. 2022, doi: 10.1007/s10661-022-10633-4.

A. Omri, W. Hamza, and M. Benzina, “Photo-Fenton oxidation and mineralization of methyl orange using Fe-sand as effective heterogeneous catalyst,” Journal Of Photochemistry & Photobiologi A : Chemistry, 2020, doi: https://doi.org/10.1016/j.jphotochem.2020.112444.

Z. Wang, Y. Li, X. Xie, and Z. Wang, “Bifunctional MnFe2O4/chitosan modified biochar composite for enhanced methyl orange removal based on adsorption and photo-Fenton process,” Colloids Surf A Physicochem Eng Asp, 2021, doi: https://doi.org/10.1016/j.colsurfa.2020.126104.

N. Dai, Y. Shuang, X. Zhang, and L. Feng, “Typical synthesis of an iron-modified Laponite @diatomite composite for photo-Fenton degradation of methyl orange dyes,” Appl Surf Sci, Sep. 2022, doi: DOI:10.1016/j.apsusc.2022.154886.

M. S. Vasilyeva et al., “Degradation of methyl orange in heterogeneous photo-Fenton reaction over V (IV)-containing oxide-phosphate coatings formed on titanium by plasma electrolytic oxidation,” Surf Coat Technol, 2021, doi: https://doi.org/10.1016/j.surfcoat.2021.126898.

C. Jaramillo-Páez, J. A. Navío, M. C. Hidalgo, A. Bouziani, and M. El Azzouzi, “Mixed α-Fe2O3/Bi2WO6 oxides for photoassisted hetero-Fenton degradation of Methyl Orange and Phenol,” J Photochem Photobiol A Chem, vol. 332, pp. 521–533, Jan. 2017, doi: 10.1016/j.jphotochem.2016.09.031.

N. Mukwevho, P. J. Mafa, K. K. Kefeni, A. K. Mishra, S. B. Mishra, and A. T. Kuvarega, “Photo-Fenton like reaction for the degradation of methyl orange using magnetically retrievable NiFe2O4/CoMoS4 heterojunction photocatalyst,” Journal of Water Process Engineering, vol. 65, Aug. 2024, doi: 10.1016/j.jwpe.2024.105882.

X. T. Wang, Y. Li, X. Q. Zhang, J. F. Li, Y. N. Luo, and C. W. Wang, “Fabrication of a magnetically separable Cu 2 ZnSnS 4 /ZnFe 2 O 4 p-n heterostructured nano-photocatalyst for synergistic enhancement of photocatalytic activity combining with photo-Fenton reaction,” Appl Surf Sci, vol. 479, pp. 86–95, Jun. 2019, doi: 10.1016/j.apsusc.2019.02.045.

M. J. Baruah, R. Dutta, M. E. A. Zaki, and K. K. Bania, “Heterogeneous Iron-Based Catalysts for Organic Transformation Reactions: A Brief Overview,” Jul. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/molecules29133177.

S. Rahim Pouran, A. A. Abdul Raman, and W. M. A. Wan Daud, “Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions,” Feb. 01, 2014. doi: 10.1016/j.jclepro.2013.09.013.

Q. Feng et al., “Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation,” J Alloys Compd, vol. 737, pp. 197–206, Mar. 2018, doi: 10.1016/J.JALLCOM.2017.12.070.

M. A. Bin Adnan, K. Arifin, L. J. Minggu, and M. B. Kassim, “Titanate-based perovskites for photochemical and photoelectrochemical water splitting applications: A review,” Dec. 27, 2018, Elsevier Ltd. doi: 10.1016/j.ijhydene.2018.10.173.

G. Kumar and R. K. Dutta, “Sunlight mediated photo-Fenton degradation of tetracycline antibiotic and methylene blue dye in aqueous medium using FeWO4/Bi2MoO6 nanocomposite,” Process Safety and Environmental Protection, vol. 159, pp. 862–873, Mar. 2022, doi: 10.1016/j.psep.2022.01.063.

U. J. Ahile, R. A. Wuana, A. U. Itodo, R. Sha’Ato, and R. F. Dantas, “Stability of iron chelates during photo-Fenton process: The role of pH, hydroxyl radical attack and temperature,” Journal of Water Process Engineering, vol. 36, p. 101320, Aug. 2020, doi: 10.1016/J.JWPE.2020.101320.

M. Idrees et al., “Adsorption-coupled Fenton type reduction of bromate in water by high-yield polymer-derived ceramic-supported nano-zerovalent iron,” Environ Res, vol. 258, p. 119419, Oct. 2024, doi: 10.1016/J.ENVRES.2024.119419.

A. Osama Eljamal, “Synthesis of Novel Graphene Oxide-Based Nanocomposite for Antibiotics Removal in Water Purification MOHD FAIZUL IDHAM BIN MOHD ZULKIPLI,” 2023.

Y. Ren, Y. Yin, J. Zhang, L. Lv, and W. Zhang, “Trade-off between Fenton-like activity and structural stability of MILs(Fe),” Chemical Engineering Journal, vol. 420, p. 129583, Sep. 2021, doi: 10.1016/J.CEJ.2021.129583.

S. Tu, Z. Ning, X. Duan, X. Zhao, and L. Chang, “Efficient electrochemical hydrogen peroxide generation using TiO2/rGO catalyst and its application in electro-Fenton degradation of methyl orange,” Colloids Surf A Physicochem Eng Asp, vol. 651, Oct. 2022, doi: 10.1016/j.colsurfa.2022.129657.

D. Zeng, Z. Dan, F. Qin, and H. Chang, “Adsorption-enhanced reductive degradation of methyl orange by Fe73.3Co10Si4B8P4Cu0.7 amorphous alloys,” Mater Chem Phys, vol. 242, Feb. 2020, doi: 10.1016/j.matchemphys.2019.122307.

L. Yang, W. Chen, C. Sheng, H. Wu, N. Mao, and H. Zhang, “Fe/N-codoped carbocatalysts loaded on carbon cloth (CC) for activating peroxymonosulfate (PMS) to degrade methyl orange dyes,” Appl Surf Sci, vol. 549, May 2021, doi: 10.1016/j.apsusc.2021.149300.

Author Biographies

Rani Fatmawati, Department of Chemistry, State University of Padang

Indang Dewata, Department of Chemistry, State University of Padang

Edi Nasra, Department of Chemistry, State University of Padang

Romy Dwipa Yamesa Away, Department of Chemistry, State University of Padang

License

Copyright (c) 2025 Rani Fatmawati, Indang Dewata, Edi Nasra, Romy Dwipa Yamesa Away

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).