Mangrove Biofiltration as A Green Biotechnology for Wastewater Remediation: Targeting DO, BOD, COD, Phosphate, Detergent Mbas, and Ammonia
Authors
Aini Aini , Irawansyah Irawansyah , Ika Nurfajri Mentari , Alfi Maulana , Jumari UstiawatyDOI:
10.29303/jbt.v25i4.10385Published:
2025-10-22Issue:
Vol. 25 No. 4 (2025): in ProgressKeywords:
Ammonia, Biofiltration, Detergent MBAS, Mangrove powder, PhosphateArticles
Downloads
How to Cite
Downloads
Abstract
This Wastewater treatment plants are essential for reducing pollution before wastewater is discharged, but conventional systems often fail to achieve effective pollutant removal . This study aimed to measure the effectiveness of mangrove powder in treating industrial wastewater before it is discharged into the environment to improve wastewater quality. Samples were taken at two points: after conventional wastewater treatment and after treatment with mangrove biofiltration. The biofiltration system was designed to address the limitations of conventional treatment, particularly in reducing BOD₅, COD, phosphate, MBAS, and increasing dissolved oxygen (DO). Sampling was carried out using a one liter sterile sample bottle. Sampling was carried out using a 1-liter sterile sample bottle. Sampling was carried out at one point with four repetitions. Parameters analyzed included TSS, pH, DO, BOD₅, COD, nitrate, nitrite, ammonia, phosphate, sulfate, and MBAS detergent. Mangrove biofiltration achieved reductions in TSS (55.26%), COD (99.35%), nitrate (100%), BOD₅ (99.15%), phosphate (96.67%), sulfate (99.55%), nitrite (100%), ammonia (90.00%), and MBAS (100%), while DO increased by 47.37% and pH remained stable. These improvements indicate the mangrove biofilter’s capacity to adsorb and biologically degrade organic matter and pollutants, enhancing wastewater quality to meet reuse standards. The results of the study show the potential of mangrove-based biofiltration as a solution for waste treatment units using mangrove biofiltration to reduce the concentration of DO, BOD, COD, phospat, Detergen MBAS, and Ammonis in industrial waste before being discharged into the environment.
References
Abd Wahid, N. B., Razak, H. A., Isa, I. I. M., Latif, M. T., Mohamad, N., Srithawirat, T., Dominick, D., Ramli, S., Abd Hamid, N. Z., & Azhar, T. N. A. T. (2021). Methylene blue active substances (Mbas) and linear alkylbenzene sulphonates (las) in urban and suburban atmospheric aerosol. Environment and Ecology Research, 9(4), 159–165. https://doi.org/10.13189/eer.2021.090403
Adjovu, G. E., Stephen, H., James, D., & Ahmad, S. (2023). Measurement of Total Dissolved Solids and Total Suspended Solids in Water Systems: A Review of the Issues, Conventional, and Remote Sensing Techniques. In Remote Sensing (Vol. 15, Issue 14). https://doi.org/10.3390/rs15143534
Ahmed, A. M., & Kareem, S. L. (n.d.). Evaluating the role of hydraulic retention time (HRT) in pollutant removal efficiency using Arundo donax in vertical subsurface flow constructed wetlands. Bioremediation Journal, 1–15. https://doi.org/10.1080/10889868.2024.2439829
Ahmed, H. M., El-Khateeb, M. A., Mohamed, N. Y., Sobhy, N. A., & Fawzy, M. E. (2024). Evaluation of different natural waste materials as bio-coagulants for domestic wastewater treatment. Desalination and Water Treatment, 317, 100034. https://doi.org/10.1016/J.DWT.2024.100034
Asheghmoalla, M., & Mehrvar, M. (2024). Integrated and Hybrid Processes for the Treatment of Actual Wastewaters Containing Micropollutants: A Review on Recent Advances. In Processes (Vol. 12, Issue 2). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/pr12020339
Campanati, C., Willer, D., Schubert, J., & Aldridge, D. C. (2022). Sustainable Intensification of Aquaculture through Nutrient Recycling and Circular Economies: More Fish, Less Waste, Blue Growth. In Reviews in Fisheries Science and Aquaculture (Vol. 30, Issue 2). https://doi.org/10.1080/23308249.2021.1897520
Fagnant, C. S., Sánchez-Gonzalez, L. M., Zhou, N. A., Falman, J. C., Eisenstein, M., Guelig, D., Ockerman, B., Guan, Y., Kossik, A. L., Linden, Y. S., Beck, N. K., Wilmouth, R., Komen, E., Mwangi, B., Nyangao, J., Shirai, J. H., Novosselov, I., Borus, P., Boyle, D. S., & Meschke, J. S. (2018). Improvement of the Bag-Mediated Filtration System for Sampling Wastewater and Wastewater-Impacted Waters. Food and Environmental Virology, 10(1), 72–82. https://doi.org/10.1007/s12560-017-9311-7
Hamisi, R., Renman, A., Renman, G., Wörman, A., & Thunvik, R. (2022). Performance of a tidal flow constructed wetland used for post-treatment of on-site wastewater in cold climate. Journal of Water Process Engineering, 47, 102679. https://doi.org/10.1016/J.JWPE.2022.102679
Hashmat, A. J., Afzal, M., Iqbal, S., Amin, I., Arias, C. A., Brix, H., Zafar, I., Riaz, S., Rehman, R. ur, Salamatullah, A. M., Wondmie, G. F., & Bourhia, M. (2024). Nutrients, surfactants, and aeration in constructed wetlands affect bacterial persistence and metabolic activity during the remediation of crude oil-contaminated water. Bioresources and Bioprocessing, 11(1). https://doi.org/10.1186/s40643-024-00757-5
Hiep, N. T., Anh, L. H. Q., Tuan, P. D., Khang, D. S., Dong, P. D., Han, H. T. N., Thuan, D. D., & Nga, D. T. (2023). Improving the Treatment of Saline Wastewater from Shrimp Farms Using Hybrid Constructed Wetlands Models toward Sustainable Development. Environment and Natural Resources Journal, 21(6). https://doi.org/10.32526/ennrj/21/20230146
Hossain, M. B., Masum, Z., Rahman, M. S., Yu, J., Noman, M. A., Jolly, Y. N., Begum, B. A., Paray, B. A., & Arai, T. (2022). Heavy Metal Accumulation and Phytoremediation Potentiality of Some Selected Mangrove Species from the World’s Largest Mangrove Forest. Biology, 11(8). https://doi.org/10.3390/biology11081144
Hussain, S. I., Blowes, D. W., Ptacek, C. J., Wootton, B. C., Balch, G., & Higgins, J. (2024). Wastewater Treatment for Nutrients and Pathogens in a Demonstration-Scale Outdoor Constructed Wetland System. Water (Switzerland), 16(15). https://doi.org/10.3390/w16152198
Idris, N. N., Chua, L. H. C., Mustaffa, Z., Das, S., & Takaijudin, H. (2024). A review study on the association between hydraulic performance and treatment effectiveness in free surface flow constructed wetlands. Ecological Engineering, 203, 107258. https://doi.org/10.1016/J.ECOLENG.2024.107258
Kawan, J. A., Suja’, F., Pramanik, S. K., Yusof, A., Rahman, R. A., & Hasan, H. A. (2022). Effect of Hydraulic Retention Time on the Performance of a Compact Moving Bed Biofilm Reactor for Effluent Polishing of Treated Sewage. Water (Switzerland), 14(1). https://doi.org/10.3390/w14010081
Kim, J., Wu, B., Jeong, S., Jeong, S., & Kim, M. (2024). Recent advances of membrane-based hybrid membrane bioreactors for wastewater reclamation. Frontiers in Membrane Science and Technology, 3. https://doi.org/10.3389/frmst.2024.1361433
Kumar, M., Bolan, N. S., Hoang, S. A., Sawarkar, A. D., Jasemizad, T., Gao, B., Keerthanan, S., Padhye, L. P., Singh, L., Kumar, S., Vithanage, M., Li, Y., Zhang, M., Kirkham, M. B., Vinu, A., & Rinklebe, J. (2021). Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? Journal of Hazardous Materials, 420. https://doi.org/10.1016/j.jhazmat.2021.126534
Kusuma, R. M., Mirwan, M., Kunci, K., Bioetanol, :, Support, E. E., & Lundry, L. (n.d.-a). Penurunan MBAS (Methylene Blue Active Subtance) Dan Fosfat Dalam Limbah Laundry Dengan Elektrokoagulasi Bioetanol. http://envirotek.upnjatim.ac.id/
Kusuma, R. M., Mirwan, M., Kunci, K., Bioetanol, :, Support, E. E., & Lundry, L. (n.d.-b). Penurunan MBAS (Methylene Blue Active Subtance) Dan Fosfat Dalam Limbah Laundry Dengan Elektrokoagulasi Bioetanol. http://envirotek.upnjatim.ac.id/
Lasisi, K. H., Ajibade, F. O., Idowu, T. E., Ajibade, T. F., Adelodun, B., Ojo, A. O., Fadugba, O. G., Olanrewaju, O. O., & Adewumi, J. R. (2023). Tidal coastal wetlands for wastewater management. Advances in Chemical Pollution, Environmental Management and Protection, 9, 263–284. https://doi.org/10.1016/BS.APMP.2022.11.002
Liu, M., Lin, Z., Li, J., Zhu, M., Tang, Z., & Li, K. (2024). Performance Assessment of Rural Decentralized Domestic Wastewater Treatment Facilities in Foshan, China. Water (Switzerland), 16(13). https://doi.org/10.3390/w16131901
Liu, X., Wang, Y., Liu, H., Zhang, Y., Zhou, Q., Wen, X., Guo, W., & Zhang, Z. (2024). A systematic review on aquaculture wastewater: Pollutants, impacts, and treatment technology. Environmental Research, 262. https://doi.org/10.1016/J.ENVRES.2024.119793
Loh, Z. Z., Zaidi, N. S., Syafiuddin, A., Yong, E. L., Boopathy, R., Kueh, A. B. H., & Prastyo, D. D. (2021). Shifting from conventional to organic filter media in wastewater biofiltration treatment: A review. In Applied Sciences (Switzerland) (Vol. 11, Issue 18). MDPI. https://doi.org/10.3390/app11188650
Makała, A., Uwimpaye, F., Dymaczewski, Z., Jeż-Walkowiak, J., Strykowska, A., Cierniak, D., Machnicka, V., & Wyrwas, B. (2023). Influence of artificial infiltration on the removal of surfactants from surface waters. Desalination and Water Treatment, 315, 190–204. https://doi.org/10.5004/DWT.2023.30126
Maura, J., Atreya, S., & Arshi, A. (2023). The Treatment of Wastewater, Recycling and Reuse - Past, Present, and in the Future. International Journal of Science and Research (IJSR), 12(11), 210–222. https://doi.org/10.21275/sr231013064713
Mentari, R. J., Soenardjo, N., & Yulianto, B. (2022). Potensi Fitoremediasi Mangrove Rhizophora mucronata Terhadap Logam Berat Tembaga di Kawasan Mangrove Park, Pekalongan. Journal of Marine Research, 11(2). https://doi.org/10.14710/jmr.v11i2.33246
Nurdin, M. I., Sukasri, A., & Damayanti, J. D. (2023). Adsorption of Ammonia in Wastewater Using Hyacinth (Eichornia Crassipes) Powder with The Assistance of Bio Balls. Equilibrium Journal of Chemical Engineering, 7(2), 116. https://doi.org/10.20961/equilibrium.v7i2.76073
Rehman, A., Ali, H., Naz, I., Saroj, D. P., & Ahmed, S. (2021). Domestic wastewater treatment efficiency of the pilot-scale trickling biofilter system with variable flow rates and hydraulic retention times. Environmental Technology (United Kingdom), 42(6). https://doi.org/10.1080/09593330.2019.1650121
Roy, S. M., Jayraj, P., Machavaram, R., Pareek, C. M., & Mal, B. C. (2021). Diversified aeration facilities for effective aquaculture systems—a comprehensive review. Aquaculture International, 29(3), 1181–1217. https://doi.org/10.1007/S10499-021-00685-7
Saili, M. S., Sourav, G., & Srimoyee, B. (2022). Mangroves as potential agents of Phytoremediation: A review. In Research Journal of Chemistry and Environment (Vol. 26, Issue 9, pp. 150–156). World Research Association. https://doi.org/10.25303/2609rjce1500156
Senzanje, A., Mabhaudhi, T., & Mudhara, M. (2023). Water-Energy-Food Nexus As a Sustainable Approach for Advancing Food and Nutrition Security and Achieving Sdgs 2, 6 and 7 With Specific Attention To Efficient Energy Use Food Production (Issue April). www.wrc.org.za
Sganzerla, W. G., Tena, M., Sillero, L., Magrini, F. E., Sophiatti, I. V. M., Gaio, J., Paesi, S., Forster-Carneiro, T., Solera, R., & Perez, M. (2023). Application of Anaerobic Co-digestion of Brewery by-Products for Biomethane and Bioenergy Production in a Biorefinery Concept. Bioenergy Research, 16(4). https://doi.org/10.1007/s12155-023-10605-7
Toprak, N., Sen, S., & Yigit, B. (2022). The role of diaphragmatic breathing exercise on urinary incontinence treatment: A pilot study. Journal of Bodywork and Movement Therapies, 29. https://doi.org/10.1016/j.jbmt.2021.10.002
Valerio Soyan, R., Siti Sofiyah, E., & Listyendah Zahra, N. (2022). Perancangan Instalasi Pengolahan Air Limbah Domestik pada Industri Pertambangan PT X (Vol. 1, Issue 1).
Verâne, J., dos Santos, N. C. P., da Silva, V. L., de Almeida, M., de Oliveira, O. M. C., & Moreira, Í. T. A. (2020). Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Marine Pollution Bulletin, 160, 111687. https://doi.org/10.1016/J.MARPOLBUL.2020.111687
Xu, C., Feng, Y., Li, H., Li, Y., Yao, Y., & Wang, J. (2024). Constructed wetlands for mariculture wastewater treatment: From systematic review to improvement measures and insights. Desalination, 579, 117505. https://doi.org/10.1016/J.DESAL.2024.117505
Zairinayati, Z. R., & Shatriadi, H. (2019). Biodegradasi Fosfat pada Limbah Laundry menggunakan Bakteri Consorsium Pelarut Fosfat. Jurnal Kesehatan Lingkungan Indonesia, 18(1), 57. https://doi.org/10.14710/jkli.18.1.57-61
Zhang, R., Li, K., Yi, L., Su, X., Liu, C., Rong, X., Ran, H., Wei, Y., Wan, L., Han, R., & Wu, Y. (2024). Nitrogen Removal from Polluted Water by an Integrated Constructed Wetland-Microbial Electrolysis Cell System. Water (Switzerland), 16(17). https://doi.org/10.3390/w16172368
Zhao, D., Chen, C., Yang, J., Zhou, S., Du, J., Zhang, M., & An, S. (2021). Mutual promotion of submerged macrophytes and biofilms on artificial macrophytes for nitrogen and COD removal improvement in eutrophic water. Environmental Pollution, 277. https://doi.org/10.1016/j.envpol.2021.116718
Zhao, Z., Wang, L., Wang, D., & Lai, T. (2023). Study on the Adsorption Relationship between Organic Matter and Particulate Matter in Water Distribution Pipes.
License
Copyright (c) 2025 Aini Aini, Irawansyah Irawansyah, Ika Nurfajri Mentari, Alfi Maulana, Jumari Ustiawaty

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























