From Genes to Therapy: The Role of Candidate Gene SNP Polymorphisms in the Implementation of Personalized Medicine for Type 2 Diabetes Mellitus
Authors
Siti Sofia , Jekmal Malau , Dandy Satria Damara , Dwi PurbasariDOI:
10.29303/jbt.v25i4a.10721Published:
2025-12-25Issue:
Vol. 25 No. 4a (2025): Special IssueKeywords:
Genes sNPs, Type-2 DM, Personalized Medicine, PharmacogenomicArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Type 2 diabetes mellitus is a long-term metabolic disorder shaped by genetic, environmental, and lifestyle influences. Research in genomics reveals that single nucleotide polymorphisms (SNPs) in specific genes can elevate the risk of this condition and may lead to differences in how individuals react to diabetes medications, potentially positioning them as indicators for risk and treatment outcomes in personalized healthcare. This review aims to explore the contributions of SNPs in candidate genes, particularly TCF7L2 rs7903146, KCNJ11 rs5219, KCNQ1 rs2237892, SLC30A8 rs11558471, IRS1 rs1801278, CDKAL1 rs7754840, and MTNR1B rs10830963, contributes to the development of type 2 diabetes. responses to therapy, and their possible roles as clinical markers. A narrative review was carried out by searching literature on PubMed, SpringerLink, and Google Scholar using keywords like “type 2 diabetes mellitus,” “SNP,” and “pharmacogenomics.” English-language articles from 2015 to 2025 that examined connections between genetic variations and either disease risk or treatment responses in humans were included. The findings suggest that these polymorphisms largely impair beta-cell function or disrupt insulin signaling, increasing the likelihood of type 2 diabetes mellitus. Some SNPs are also tied to varied reactions to insulin-based drugs, although metformin typically demonstrates more uniform effectiveness across different genotypes. In summary, SNPs in candidate genes hold promise as tools for risk assessment and personalized treatment choices, but extensive, multi-ethnic prospective studies are essential before they can be integrated into standard clinical practice.
References
Albegali, A. A., Shahzad, M., Mahmood, S., Saeed, M., & Ismail, T. (2019). Genetic Association of Insulin Receptor Substrate-1 (IRS-1, rs1801278) Gene with Insulin Resistance in Type 2 Diabetes Mellitus in a Pakistani Population. Molecular Biology Reports, 46(6), 6065–6070. https://doi.org/10.1007/s11033-019-05041-w
Bommer, C., Sagalova, V., Heesemann, E., Manne-Goehler, J., Atun, R., Bärnighausen, T., & Vollmer, S. (2018). Global Economic Burden of Diabetes in Adults: Projections from 2015 to 2030. Diabetes Care, 41(5), 963-970. https://doi.org/10.2337/dc17-1962
Cirillo, E., Kutmon, M., Gonzalez Hernandez, M., Hooimeijer, T., Adriaens, M. E., Eijssen,L. M. T., Parnell, L. D., Coort, S. L., & Evelo, C. T. (2018). From SNPs to Pathways: Biological Interpretation of Type 2 Diabetes (T2DM) Genome Wide Association Study (GWAS) Results. PLOS ONE, 13(4), e0193515. https://doi.org/10.1371/journal.pone.0193515
Davidson, H. W., Wenzlau, J. M., & O’Brien, R. M. (2014). Zinc Transporter 8 (ZnT8) and β Cell Function. Trends in Endocrinology & Metabolism, 25(8), 415–424. https://doi.org/10.1016/j.tem.2014.03.008
DeForest, N., & Majithia, A. R. (2022). Genetics of Type 2 Diabetes: Implications from Large-Scale Studies. Current Diabetes Reports, 22(227-235). https://doi.org/10.1007/s11892-022-01462-3
Delbosque-Plata, L., Martínez-Martínez, E., Espinoza-Camacho, M. Á., & Gragnoli, C. (2021). The Role of TCF7L2 in Type 2 Diabetes. Diabetes, 70(6), 1220–1228. https://doi.org/10.2337/db20-0573
Dhawan, D., & Padh, H. (2016). Genetic Variations in TCF7L2 Influence Therapeutic Response to Sulfonylureas in Indian Diabetics. Diabetes Research and Clinical Practice, 121, 35-40. https://doi.org/10.1016/j.diabres.2016.08.018
Drake, I., Sonestedt, E., Ericson, U., Wallström, P., Orho-Melander, M., & Schulze, M. B. (2017). A Prospective Study of Dietary and Supplemental Zinc Intake and Risk of Type 2 Diabetes Depending on Genetic Variation in SLC30A8. Genes & Nutrition, 12(1),11. https://doi.org/10.1186/s12263-017-0586-y
Dujic, T., Bego, T., Malenica, M., Velija-Asimi, Z., Ahlqvist, E., Groop, L., Pearson, E. R., Causevic, A., & Semiz, S. (2019). Effects of the TCF7L2 rs7903146 Variant on Metformin Response in Patients With Type 2 Diabetes. Bosnian Journal of Basic Medical Sciences, 19(4), 368–374. https://doi.org/10.17305/bjbms.2019.4181
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275
Hou, Y. C., Zheng, C. M., Yen, T. H., & Lu, K. C. (2020). Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection. International Journal of Molecular Sciences, 21(21), 7833. https://doi.org/10.3390/ijms21217833
Huang, Y., Dou, X., He, M., Su, Y., Lin, H., & Yang, Y. (2025). The G-allele of rs10830963 in MTNR1B Exerts Stage-Specific Effects Across the Trajectory of Type 2 Diabetes: A Multi-State Analysis. International Journal of Molecular Sciences, 26(16), 7855. https://doi.org/10.3390/ijms26167855
Ibadurrahman, W., Hanif, N., & Hermawan, A. (2022). Functional Network Analysis of p85 and PI3K as Potential Gene Targets and Mechanism of Oleanolic Acid in Overcoming Breast Cancer Resistance to Tamoxifen. Journal of Genetic Engineering and Biotechnology, 20, 66. https://doi.org/10.1186/s43141-022-00341-4
Ijaz, A., Babar, S., Sarwar, S., Aslamkhan, M., & Qamar, R. (2019). The Combined Role of Allelic Variants of IRS-1 and IRS-2 Genes in Susceptibility to Type 2 Diabetes in Punjabi Pakistani Subjects. Diabetology & Metabolic Syndrome, 11, 64. https://doi.org/10.1186/s13098-019-0459-1
International Diabetes Federation. (2023). IDF Diabetes Atlas (10th ed.). Brussels, Belgium: International Diabetes Federation. https://diabetesatlas.org/
Ju, D., Hui, D., Hammond, D. A., Wonkam, A., & Tishkoff, S. A. (2022). Importance of Including Non-European Populations in Large Human Genetic Studies to Enhance Precision Medicine. Annual review of biomedical data science, 5, 321–339. https://doi.org/10.1146/annurev-biodatasci-122220-112550
Makhzoom, O., Kabalan, Y., & Al-Quobaili, F. (2019). Association of KCNJ11 rs5219 Gene Polymorphism with Type 2 Diabetes Mellitus in a Population of Syria: A Case-Control Study. BMC Medical Genetics, 20, 107. https://doi.org/10.1186/s12881-019- 0846-3
Mahajan, A., et al. (2024). Genetic Drivers Of Heterogeneity In Type 2 Diabetes Pathophysiology. Nature. https://doi.org/10.1038/s41586-024-07019-6
Mahajan, A., et al. (2018). Fine-Mapping Type 2 Diabetes Loci to Single-Variant Resolution Using High-Density Imputation and Islet-Specific Epigenome Maps. Nature Genetics, 50(11), 1505–1513. https://doi.org/10.1038/s41588-018-0241-6
Ojo, O. A., Ibrahim, H. S., Rotimi, D. E., Ogunlakin, A. D., & Ojo, A. B. (2023). Diabetes Mellitus: From Molecular Mechanism to Pathophysiology and Pharmacology. Biomedicine & Pharmacotherapy, 170, 115555. https://doi.org/10.1016/j.biopha.2023.115555
Patel, R., Parmar, N., Pramanik Palit, S., Rathwa, N., Ramachandran, A. V., & Begum, R. (2022). Diabetes Mellitus and Melatonin: Where Are We? Biochimie, 195, 90–102. https://doi.org/10.1016/j.biochi.2022.01.04
Phani, N. M., Vohra, M., Adhikari, P., Nagri, S. K., Shashikiran, U., D'Souza, S. C., Kalluri, P. R. R., Satyamoorthy, K., & Rai, P. S. (2017). Genetic Variants Identified from GWAS for Predisposition to Type 2 Diabetes Predict Sulfonylurea Drug Response. Current molecular medicine, 17(8), 580–586. https://doi.org/10.2174/1566524018666180222122653
Prasad, R. B., Kristensen, K., Katsarou, A., & Shaat, N. (2021). Association of Single Nucleotide Polymorphisms With Insulin Secretion, Insulin Sensitivity, and Diabetes in Women With a History of Gestational Diabetes Mellitus. BMC Medical Genomics, 14, 274. https://doi.org/10.1186/s12920-021-01123-6
Prudente, S., Di Paola, R., Pezzilli, S., Garofolo, M., Lamacchia, O., Filardi, T., Mannino, G. C., Mercuri, L., Alberico, F., Scarale, M. G., Sesti, G., Morano, S., Penno, G., Cignarelli, M., Copetti, M., & Trischitta, V. (2018). Pharmacogenetics of Oral Antidiabetes Drugs: Evidence for Diverse Signals at the IRS1 Locus. The Pharmacogenomics Journal, 18(4), 431–435. https://doi.org/10.1038/tpj.2017.32
Shorokhova, P. B., & Baranov, V. L. (2021). Differentiated Approach to Metformin Therapy in Newly Diagnosed Type 2 Diabetes Mellitus From the Perspective of Pharmacogenetics. Pharmateca, 28(12), 72–79. https://doi.org/10.18565/pharmateca.2021.12.72-79
Soltani, G., Hatefi, Z., Salehi, A. R., Khosravi, S., Ghiasi, M. R., Teke, K., Aminorroaya, A., & Salehi, R. (2018). Pharmacogenomics of Sulfonylureas Response in Relation to rs7754840 Polymorphisms in Cyclin-Dependent Kinase 5 Regulatory Subunit- associated Protein 1-like (CDKAL1) Gene in Iranian Type 2 Diabetes Patients. Advanced Biomedical Research, 7, 96. https://doi.org/10.4103/abr.abr_144_17
Song, J.-F., Zhang, J., Zhang, M.-Z., Ni, J., Wang, T., Zhao, Y.-Q., & Khan, N. U. (2021). Evaluation of the Effect of MTNR1B rs10830963 Gene Variant on the Therapeutic Efficacy of Nateglinide in Treating Type 2 Diabetes Among Chinese Han Patients. BMC Medical Genomics, 14(1), 156. https://doi.org/10.1186/s12920-021-01004-y
Suzuki, K., Hatzikotoulas, K., Southam, L., et al. (2024). Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology. Nature, 627, 347–357. https://doi.org/10.1038/s41586-024-07019-6
Tuomi, T., Nagorny, C. L. F., Singh, P., Bennet, H., Yu, Q., Alenkvist, I., Isomaa, B., Östman, B., Söderström, J., Pesonen, A. K., Martikainen, S., Räikkönen, K., Forsén, T., Hakaste, L., Almgren, P., Storm, P., Asplund, O., Shcherbina, L., Fex, M., Mulder, H. et al., (2016). Increased Melatonin Signaling is a Risk Factor for Type 2 Diabetes. Cell Metabolism, 23(6), 1067–1077. https://doi.org/10.1016/j.cmet.2016.04.009
Tan, X., & Benedict, C. (2021). Does the Common Type 2 Diabetes-Susceptibility Variant in the MTNR1B Gene Matter for Glycemic Control Among Patients on Antidiabetic Pharmacotherapy?. Mayo Clinic Proceedings, 96(5), 1372–1374. https://doi.org/10.1016/j.mayocp.2021.03.005
Tran, N. Q., Truong, S. D., Ma, P. T., Hoang, C. K., Le, B. H., Ngo Dinh, T. T., Tran, L. V., Tran, T. V., Le, L. H. G., Le, K. T., Nguyen, H. T., Vu, H. A., Mai, T. P., & Do, M. D. (2022). Association of KCNJ11 and ABCC8 Single-Nucleotide Polymorphisms With Type 2 Diabetes Mellitus in a Kinh Vietnamese Population. Medicine, 101(46), e31653. https://doi.org/10.1097/MD.0000000000031653
Vujkovic, M., Keaton, J. M., Lynch, J. A., et al. (2020). Discovery of 318 New Risk Loci For Type 2 Diabetes and Related Vascular Outcomes Among 1.4 Million Participants In A Multi-Ancestry Meta-Analysis. Nature Genetics, 52, 680–691. https://doi.org/10.1038/s41588-020-0637-y
Wei, F.-Y., & Tomizawa, K. (2012). Development of Type 2 Diabetes Caused by a Deficiency of a tRNALys Modification. Islets, 4(1), 71–73. https://doi.org/10.4161/isl.18262
Zeggini, E. et al. (2024). Genetic Risk Variants Lead to Type 2 Diabetes Development Through Different Pathways. Nature. https://doi.org/10.1038/d41586-024-00440-x
Zhang, H., Klareskog, L., Matussek, A., et al. (2019). Translating Genomic Medicine to the Clinic: Challenges and Opportunities. Genome Medicine, 11, 9. https://doi.org/10.1186/s13073-019-0622-1
Zhou, B., et al. (2016). Worldwide Trends in Diabetes Since 1980: A Pooled Analysis of 751 Population-Based Studies With 4.4 Million Participants. The Lancet, 387(10027), 1513–1530. https://doi.org/10.1016/S0140-6736(16)00618-8
License
Copyright (c) 2025 Siti Sofia, Jekmal Malau, Dandy Satria Damara, Dwi Purbasari

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























