Pathogenicity of Salmonella: A Literature Study
Authors
Widhie Estiningtyas , Ima Arum Lestarini , Nikita Andini Putri , Diajeng Aesya Mutiara FirdausyDOI:
10.29303/jbt.v26i1.10819Published:
2026-02-11Issue:
Vol. 26 No. 1 (2026): Januari-MaretKeywords:
Antimicrobial resistance, Characterizing, Enterobacteriaceae family, SalmonellaArticles
Downloads
How to Cite
Downloads
Abstract
Salmonella is a type of gram-negative bacteria that belongs to the Enterobacteriaceae family and is a major health issue worldwide because it can lead to different illnesses in both humans and animals. This comprehensive study explores the pathogenicity of Salmonella, focusing on its general characteristics, mechanisms of pathogenesis, and host-pathogen interactions. The research examines the taxonomy, morphology, and biochemical properties of Salmonella, highlighting the diversity within the genus and its adaptability to various environments. The study then delves into the complex mechanisms of pathogenicity, including adhesion to host cells, tissue invasion, intracellular survival, and modulation of host immune responses. Particular focus is placed on the significance of Salmonella Pathogenicity Islands (SPIs) and the Type III Secretion Systems (T3SS) they code for in relation to virulence. In addition, the research examines how the host's immune system reacts to a Salmonella infection, covering both innate and adaptive immune responses. This study also looks into the clinical symptoms associated with Salmonella infections, which can vary from mild gastroenteritis that resolves on its own to serious systemic illnesses such as typhoid fever. Diagnostic methods, including traditional culture techniques and modern molecular approaches, are evaluated for their efficacy in detecting and characterizing Salmonella infections. Finally, the study examines current prevention and treatment strategies, including vaccination and antibiotic therapy, while addressing the growing concern of antimicrobial resistance. This comprehensive analysis of Salmonella pathogenicity provides valuable insights into the intricate host-pathogen relationship and highlights potential avenues for developing novel therapeutic and preventive strategies against Salmonella infections.
References
Abdulkarim, I. A., & Fatima, B. (2020). Isolation and Biochemical Identification of Salmonela from Poultry Farms. Journal of Bioresource Management, 7(1), 74-83.
Andino, A., & Hanning, I. (2015). Salmonela enterica: Survival, colonization, and virulence differences among serovars. The Scientific World Journal, 2015, 520179.
AOAC. 2000. Official methods of the association of official analytical chemists. Association of Official Analytical Chemists, Washington D.C.
Barnhart, M. M., & Chapman, M. R. (2006). Curli biogenesis and function. Annual Review of Microbiology, 60, 131-147. https://doi.org/10.1146/annurev.micro.60.080805.142106
Bäumler, A. J., & Sperandio, V. (2016). Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 535(7610), 85-93. https://doi.org/10.1038/nature18849
Brenner, F. W., Villar, R. G., Angulo, F. J., Tauxe, R., & Swaminathan, B. (2000). Salmonela nomenclature. Journal of Clinical Microbiology, 38(7), 2465-2467.
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., ... & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532-1535. https://doi.org/10.1126/science.1092385
Broz, P., & Monack, D. M. (2013). Newly described pattern recognition receptors team up against intracellular pathogens. Nature Reviews Immunology, 13(8), 551-565. https://doi.org/10.1038/nri3479
Broz, P., Ohlson, M. B., & Monack, D. M. (2012). Innate immune response to Salmonela typhimurium, a model enteric pathogen. Gut Microbes, 3(2), 62-70. https://doi.org/10.4161/gmic.19193
Brumell, J. H., Goosney, D. L., & Finlay, B. B. (2002). SifA, a type III secreted effector of Salmonela typhimurium, directs Salmonela-induced filament (Sif) formation along microtubules. Traffic, 3(6), 407-415. https://doi.org/10.1034/j.1600-0854.2002.30604.x
Carattoli, A. (2003). Plasmid-mediated antimicrobial resistance in Salmonela enterica. Current Issues in Molecular Biology, 5(4), 113-122.
Chaban, B., Hughes, H. V., & Beeby, M. (2015). The flagellum in bacterial pathogens: For motility and a whole lot more. Seminars in Cell & Developmental Biology, 46, 91-103. https://doi.org/10.1016/j.semcdb.2015.09.037
Cheminay, C., Chakravortty, D., & Hensel, M. (2004). Role of neutrophils in murine salmonellosis. Infection and Immunity, 72(1), 468-477. https://doi.org/10.1128/IAI.72.1.468-477.2004
Chopra, A. K., Peterson, J. W., Chary, P., & Prasad, R. (1999). Molecular characterization of an enterotoxin from Salmonela typhimurium. Microbial Pathogenesis, 16(2), 85-98.
https://doi.org/10.1006/mpat.1998.0202
Crump, J. A., & Mintz, E. D. (2010). Global trends in typhoid and paratyphoid fever. Clinical Infectious Diseases, 50(2), 241-246. https://doi.org/10.1086/649541
Crump, J. A., Sjölund-Karlsson, M., Gordon, M. A., & Parry, C. M. (2015). Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clinical Microbiology Reviews, 28(4), 901-937. https://doi.org/10.1128/CMR.00116-14
Dorsey, C. W., Laarakker, M. C., Humphries, A. D., Weening, E. H., & Bäumler, A. J. (2005). Salmonela enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Molecular Microbiology, 57(1), 196-211. https://doi.org/10.1111/j.1365-2958.2005.04694.x
Dougan, G., John, V., Palmer, S., & Mastroeni, P. (2011). Immunity to salmonellosis. Immunological Reviews, 240(1), 196-210. https://doi.org/10.1111/j.1600-065X.2010.00999.x
Duan, Q., Zhou, M., Zhu, L., & Zhu, G. (2013). Flagella and bacterial pathogenicity. Journal of Basic Microbiology, 53(1), 1-8. https://doi.org/10.1002/jobm.201100335
Everest, P., Roberts, M., & Dougan, G. (1998). Susceptibility to Salmonela typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor alpha p55 receptor. Infection and Immunity, 66(7), 3355-3364.
Fábrega, A., & Vila, J. (2013). Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clinical Microbiology Reviews, 26(2), 308-341. https://doi.org/10.1128/CMR.00030-12
Figueira, R., & Holden, D. W. (2012). Functions of the Salmonela pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology, 158(5), 1147-1161. https://doi.org/10.1099/mic.0.058115-0
Gal-Mor, O., Boyle, E. C., & Grassl, G. A. (2014). Same species, different diseases: How and why typhoidal and non-typhoidal Salmonela enterica serovars differ. Frontiers in Microbiology, 5, 391. https://doi.org/10.1111/j.1462-5822.2010.01489.x
Galán, J. E. (2001). Salmonela interactions with host cells: Type III secretion at work. Annual Review of Cell and Developmental Biology, 17(1), 53-86. https://doi.org/10.1146/annurev.cellbio.17.1.53
Galán, J. E., & Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature, 444(7119), 567-573. https://doi.org/10.1038/nature05272
Grimont, P. A., & Weill, F. X. (2007). Antigenic formulae of the Salmonela serovars. WHO Collaborating Centre for Reference and Research on Salmonela, 9, 1-166.
Guo, A., Cao, S., Tu, L., Chen, P., Zhang, C., Jia, A., ... & Zhao, Q. (2007). FimH alleles direct preferential binding of Salmonela to distinct mammalian cells or to avian cells. Microbiology, 153(4), 1238-1248. https://doi.org/10.1099/mic.0.2006/003384-0
Guo, L., Lim, K. B., Gunn, J. S., Bainbridge, B., Darveau, R. P., Hackett, M., & Miller, S. I. (1997). Regulation of lipid A modifications by Salmonela typhimurium virulence genes phoP-phoQ. Science, 276(5310), 250-253. https://doi.org/10.1126/science.276.5310.250
Hansen-Wester, I., & Hensel, M. (2001). Salmonela pathogenicity islands encoding type III secretion systems. Microbes and Infection, 3(7), 549-559.
Haraga, A., Ohlson, M. B., & Miller, S. I. (2008). Salmonelae interplay with host cells. Nature Reviews Microbiology, 6(1), 53-66. https://doi.org/10.1038/nrmicro1788
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R., & Galán, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell, 93(5), 815-826. https://doi.org/10.1016/S0092-8674(00)81441-7
Hensel, M. (2000). Salmonela pathogenicity island 2. Molecular Microbiology, 36(5), 1015-1023. https://doi.org/10.1046/j.1365-2958.2000.01935.x
Hensel, M. (2004). Evolution of pathogenicity islands of Salmonela enterica. International Journal of Medical Microbiology, 294(2-3), 95-102. https://doi.org/10.1016/j.ijmm.2004.06.025
Hueffer, K., & Galán, J. E. (2004). Salmonela-induced macrophage death: Multiple mechanisms, different outcomes. Cellular Microbiology, 6(11), 1019-1025. https://doi.org/10.1111/j.1462-5822.2004.00446.x
Issenhuth-Jeanjean, S., Roggentin, P., Mikoleit, M., Guibourdenche, M., De Pinna, E., Nair, S., ... & Weill, F. X. (2014). Supplement 2008–2010 (no. 48) to the White–Kauffmann–Le Minor scheme. Research in Microbiology, 165(7), 526-530.
Jepson, M. A., & Clark, M. A. (2001). The role of M cells in Salmonela infection. Microbes and Infection, 3(14-15), 1183-1190. https://doi.org/10.1016/S1286-4579(01)01486-8
Jones, R. M., Wu, H., Wentworth, C., Luo, L., Collier-Hyams, L., & Neish, A. S. (2008). Salmonela AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host & Microbe, 3(4), 233-244. https://doi.org/10.1016/j.chom.2008.02.016
Kawai, T., & Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34(5), 637-650. https://doi.org/10.1016/j.immuni.2011.05.006
Kingsley, R. A., Santos, R. L., Keestra, A. M., Adams, L. G., & Bäumler, A. J. (2004). Salmonela enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Molecular Microbiology, 52(4), 1179-1190. https://doi.org/10.1111/j.1365-2958.2004.04052.x
Kintz, E., Heiss, C., Black, I., Donohue, N., Brown, N., Davies, M. R., ... & Szewczyk, J. (2017). Salmonela enterica Serovar Typhi Lipopolysaccharide O-Antigen Modifications Impact on Serum Resistance and Antibody Recognition. Infection and Immunity, 85(4), e01021-16. https://doi.org/10.1128/IAI.01021-16
Klemm, E. J., Shakoor, S., Page, A. J., Qamar, F. N., Judge, K., Saeed, D. K., ... & Dougan, G. (2018). Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. mBio, 9(1), e00105-18. https://doi.org/10.1128/mBio.00105-18
Knodler, L. A., Finlay, B. B., & Steele-Mortimer, O. (2005). The Salmonela effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. Journal of Biological Chemistry, 280(10), 9058-9064. https://doi.org/10.1074/jbc.M412874200
Le Negrate, G., Faustin, B., Welsh, K., Loeffler, M., Krajewska, M., Hasegawa, P., ... & Reed, J. C. (2008). Salmonela secreted factor L deubiquitinase of Salmonela typhimurium inhibits NF-κB, suppresses IκBα ubiquitination and modulates innate immune responses. The Journal of Immunology, 180(7), 5045-5056. https://doi.org/10.4049/jimmunol.180.7.5045
Lesnick, M. L., Reiner, N. E., Fierer, J., & Guiney, D. G. (2001). The Salmonela spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Molecular Microbiology, 39(6), 1464-1470. https://doi.org/10.1046/j.1365-2958.2001.02340.x
Luu, R. A., Gurnani, K., Dudani, R., Kammara, R., van Faassen, H., Sirard, J. C., ... & Sad, S. (2006). Delayed expansion and contraction of CD8+ T cell response during infection with virulent Salmonela typhimurium. The Journal of Immunology, 177(3), 1516-1525. https://doi.org/10.4049/jimmunol.177.3.1516
Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O'Brien, S. J., ... & International Collaboration on Enteric Disease 'Burden of Illness' Studies. (2010). The global burden of nontyphoidal Salmonella gastroenteritis. Clinical Infectious Diseases, 50(6), 882-889. https://doi.org/10.1086/650733
Mangalakumari, J., & Thirunavukkarasu, P. (2020). Biochemical and Molecular Characterization of Salmonela Strains Isolated from Chicken and Human. Current Microbiology, 77(11), 3295-3300.
Mantis, N. J., Rol, N., & Corthésy, B. (2011). Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunology, 4(6), 603-611. https://doi.org/10.1038/mi.2011.41
Marcus, S. L., Brumell, J. H., Pfeifer, C. G., & Finlay, B. B. (2000). Salmonela pathogenicity islands: big virulence in small packages. Microbes and Infection, 2(2), 145-156. https://doi.org/10.1016/S1286-4579(00)00273-2
Mastroeni, P., & Menager, N. (2003). Development of acquired immunity to Salmonela. Journal of Medical Microbiology, 52(6), 453-459. https://doi.org/10.1099/jmm.0.05071-0
Mastroeni, P., Villarreal-Ramos, B., & Hormaeche, C. E. (2009). Role of T cells, TNF alpha and IFN gamma in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro- Salmonela vaccines. Microbial Pathogenesis, 13(6), 477-491. https://doi.org/10.1016/0882-4010(92)90020-A
McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P., Courtney, L., ... & Wilson, R. K. (2001). Complete genome sequence of Salmonela enterica serovar Typhimurium LT2. Nature, 413(6858), 852-856. https://doi.org/10.1038/35101614
McGhie, E. J., Brawn, L. C., Hume, P. J., Humphreys, D., & Koronakis, V. (2009). Salmonela takes control: Effector-driven manipulation of the host. Current Opinion in Microbiology, 12(1), 117-124. https://doi.org/10.1016/j.mib.2009.01.002
McGuckin, M. A., Lindén, S. K., Sutton, P., & Florin, T. H. (2011). Mucin dynamics and enteric pathogens. Nature Reviews Microbiology, 9(4), 265-278. https://doi.org/10.1038/nrmicro2538
McLaughlin, L. M., Govoni, G. R., Gerke, C., Gopinath, S., Peng, K., Laidlaw, G., ... & Monack, D. (2009). The Salmonela SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathogens, 5(11), e1000671. https://doi.org/10.1371/journal.ppat.1000671
McQuiston, J. R., Fields, P. I., Tauxe, R. V., & Logsdon Jr, J. M. (2004). Do Salmonela carry spare tyres?. Trends in Microbiology, 12(4), 142-148. https://doi.org/10.1016/j.tim.2004.02.004
McSorley, S. J. (2014). Immunity to intestinal pathogens: lessons learned from Salmonela. Immunological Reviews, 260(1), 168-182. https://doi.org/10.1111/imr.12182
Mittrucker, H. W., Kaufmann, S. H., & Mittrücker, H. W. (2000). Immune response to infection with Salmonela typhimurium in mice. Journal of Leukocyte Biology, 67(4), 457-463. https://doi.org/10.1002/jlb.67.4.457
Nairz, M., Schroll, A., Sonnweber, T., & Weiss, G. (2010). The struggle for iron–a metal at the host–pathogen interface. Cellular Microbiology, 12(12), 1691-1702.
Needham, B. D., & Trent, M. S. (2013). Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nature Reviews Microbiology, 11(7), 467-481.
Nuccio, S. P., & Bäumler, A. J. (2014). Comparative analysis of Salmonela genomes identifies a metabolic network for escalating growth in the inflamed gut. mBio, 5(2), e00929-14. https://doi.org/10.1128/mBio.00929-14
Ouellette, A. J. (2010). Paneth cells and innate mucosal immunity. Current Opinion in Gastroenterology, 26(6), 547-553. https://doi.org/10.1097/MOG.0b013e32833dccde
Porwollik, S., Wong, R. M. Y., & McClelland, M. (2002). Evolutionary genomics of Salmonela: Gene acquisitions revealed by microarray analysis. Proceedings of the National Academy of Sciences, 99(13), 8956-8961.
Que, F., Wu, S., & Huang, R. (2013). Salmonela pathogenicity island 1(SPI-1) at work. Current Microbiology, 66(6), 582-587. https://doi.org/10.1007/s00284-013-0309-4
Raetz, C. R., & Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual Review of Biochemistry, 71(1), 635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
Raffatellu, M., Santos, R. L., Verhoeven, D. E., George, M. D., Wilson, R. P., Winter, S. E., ... & Bäumler, A. J. (2008). Simian immunodeficiency virus–induced mucosal interleukin-17 deficiency promotes Salmonela dissemination from the gut. Nature Medicine, 14(4), 421-428. https://doi.org/10.1038/nm1747
Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., ... & Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunology, 2(4), 361-367. https://doi.org/10.1038/86375
Rotger, R., & Casadesús, J. (1999). The virulence plasmids of Salmonela. International Microbiology, 2(3), 177-184.
Salcedo, S. P., & Holden, D. W. (2003). SseG, a virulence protein that targets Salmonela to the Golgi network. The EMBO Journal, 22(19), 5003-5014. https://doi.org/10.1093/emboj/cdg497
Schmidt, H., & Hensel, M. (2004). Pathogenicity islands in bacterial pathogenesis. Clinical Microbiology Reviews, 17(1), 14-56. https://doi.org/10.1046/j.1365-2958.2000.01935.x
Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2(5), a000414.
Spanò, S., Ugalde, J. E., & Galán, J. E. (2008). Delivery of a Salmonela Typhi exotoxin from a host intracellular compartment. Cell Host & Microbe, 3(1), 30-38. https://doi.org/10.1016/j.chom.2007.11.013
Spector, M. P., & Kenyon, W. J. (2012). Resistance and survival strategies of Salmonela enter
Stanaway, J. D., Reiner, R. C., Blacker, B. F., Goldberg, E. M., Khalil, I. A., Troeger, C. E., ... & Mokdad, A. H. (2019). The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Infectious Diseases, 19(4), 369-381. https://doi.org/10.1016/S1473-3099(18)30685-6
Steenackers, H., Hermans, K., Vanderleyden, J., & De Keersmaecker, S. C. (2012). Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Research International, 45(2), 502-531. https://doi.org/10.1016/j.foodres.2011.09.010
Thammavongsa, V., Missiakas, D. M., & Schneewind, O. (2013). Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science, 342(6160), 863-866. https://doi.org/10.1126/science.1242255
Thiemann, S., Smit, N., & Strowig, T. (2017). Antibiotics and the intestinal microbiome: individual responses, resilience of the ecosystem, and the susceptibility to infections. Current Topics in Microbiology and Immunology, 398, 123-146. https://doi.org/10.1007/82_2016_41
Uchiya, K., Barbieri, M. A., Funato, K., Shah, A. H., Stahl, P. D., & Groisman, E. A. (1999). A Salmonela virulence protein that inhibits cellular trafficking. The EMBO Journal, 18(14), 3924-3933. https://doi.org/10.1093/emboj/18.14.3924
Wagner, C., & Hensel, M. (2011). Adhesive mechanisms of Salmonela enterica. Advances in Experimental Medicine and Biology, 715, 17-34. https://doi.org/10.1007/978-1-4419-7089-3_2
World Health Organization. (2018). Salmonella (non-typhoidal). Retrieved from https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)
Zhou, D., & Galán, J. (2001). Salmonela entry into host cells: the work in concert of type III secreted effector proteins. Microbes and Infection, 3(14-15), 1293-1298.
https://doi.org/10.1016/S1286-4579(01)01489-3
Zhou, D., Mooseker, M. S., & Galán, J. E. (2001). Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science, 283(5410), 2092-2095.
License
Copyright (c) 2026 Widhie Estiningtyas, Ima Arum Lestarini, Nikita Andini Putri, Diajeng Aesya Mutiara Firdausy

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























