The Effect of Biofloc with the Addition of Different Commercial Probiotics in Catfish (Clarias sp.)
Authors
Dewi Putri Lestari , Fariq Azhar , Muhammad MarzukiDOI:
10.29303/jbt.v21i2.2552Published:
2021-05-02Issue:
Vol. 21 No. 2 (2021): Mei - AgustusKeywords:
Biofloc, Carbon Source, Catfish.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Catfish was one of the most popular consumption fish in Indonesia. Increasing the production of catfish farming by means of super intensive cultivation has a negative impact on the quality of the aquaculture environment which in turn can have an impact on fish health. Biofloc technology was an alternative that can be done to solve the problem of aquaculture waste. In fact, it could provide more benefits because besides being able to reduce inorganic nitrogen waste ÃÂ also provide additional feed for cultured fish so that it can increase growth and feed efficiency. This study aims to evaluate the growth performance of catfish (Clariassp.) In biofloc-based super intensive cultivation with the addition of different commercial probiotics. This research will be conducted for 5 months. The research was conducted in an aquarium in the form of an aquarium measuring 90 Ãâ 40 Ãâ 50 cm filled with 100 L. The treatment given was the addition of commercial probiotics in the culture medium with the biofloc system and fermented pellet feed with various commercial probiotics, namely commercial probiotic I, commercial probiotic II. , commercial probiotic III, positive control (biofloc culture media and without the addition of commercial probiotics), and negative control (without biofloc). Each treatment was repeated three times. Specific data growth, survival (SR), feed conversion ratio (FCR) and quality were statistical analysis with one-way analysis of variance. The results showed that the best growth performance of catfish using the biofloc culture system produced in this study was shown in PK3 treatment with a survival rate of 93.33%, a specific growth rate of 6.60, and a feed conversion ratio of 0.92.ÃÂ
References
[KKP] Kementrian Kelautan dan Perikanan (2014). Statistik Kelautan dan Perikanan 2014. Jakarta: KKP RI. 301p.
Avimelech, Y. (2009). Biofloc Technology-a Practical Book. The World Aquaculture Society, Baton Rouge : United State 182 hal.
Azim ME, & Little DC. (2008). The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4): 29-35. https://doi.org/10.1016/j.aquaculture.2008.06.036
Cai, H., Ross, L.G., Telfer, T.C., Wu, C., Zhu, A., Zhao, S. and Xu, M. (2016). Modelling the nitrogen loadings from large yellow croaker (Larimichthys crocea) cage aquaculture. Environmental Science and Pollution Research, 23(8), pp.7529-7542. https://doi.org/10.1007/s11356-015-6015-0
Crab R, Chielens B, Wille M, Bossier P, & Verstraete W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research. 41:559ââ¬â567. https://doi.org/10.1111/j.1365-2109.2009.02353.x
Crab, R., B. Chielens., M. Willie., & P. Bosier. (2009). The Effect of Different Carbon Sources on the Nutritional value of Bioflocs, a Feed of Macrobrachrium rosenbergii postlarvae, Aquaculture Research, 4 (1) : 559-567. http://dx.doi.org/10.1111/j.1365-2109.2009.02353.x
Ebeling JM, Timmons MB, & Bisogni JJ. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic and heterotrophic removal of ammoniaââ¬ânitrogen in aquaculture systems. Aquaculture, 257(1- 4): 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019
Ekasari J, Crab R, & Verstraete W. (2010). Primary Nutritional Content of Bio-Flocs Cultured with Different Organic Carbon Sources and Salinity. Hayati J. Biosci., 17: 125ââ¬â130. https://doi.org/10.4308/hjb.17.3.125
Fu, C., Li, D., Hu, W., Wang, Y., & Zhu, Z. (2007). Fastgrowing transgenic common carp mounting compensatory growth. Journal of Fish Biology, 71, 174- 185. https://doi.org/10.1111/j.1095-8649.2007.01401.x
Herath, S.S. & Satoh, S. (2015). Environmental impact of phosphorus and nitrogen from aquaculture. In Feed and Feeding Practices in Aquaculture (pp. 369-386). Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-100506-4.00015-5
Hess, S., Prescott, L.J., Hoey, A.S., McMahon, S.A., Wenger, A.S. & Rummer, J.L. (2017). Speciesspecific impacts of suspended sediments on gill structure and function in coral reef fishes. Proceedings of the Royal Society B: Biological Sciences, 284(1866), p.20171279.https://doi.org/10.1098/rspb.2017.1279
Irianto A. (2003). Probiotik Akuakultur. Yogyakarta: Gadjah Mada University Press.
Liu CH, Chiu CS, Ho PL, & Wang SW. (2009). Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. Journal of Applied Microbiology. 107:1031-1041. https://doi.org/10.1111/j.1365-2672.2009.04284.x
Mulyadi, A.E. (2011). Pengaruh Pemberian Probiotik Pada Pakan Komersil Terhadap Laju Pertumbuhan benih Ikan Patin Siam (Pangasius hypophthalamus). Skripsi. Fakultas Perikanan dan Ilmu Kelautan. Universitas Padjajaran. Jatinangor.
Praditia, F.P., (2009). Pengaruh Pemberian Bakteri Probiotik melalui Pakan terhadap Pertumbuhan dan Kelangsungan hidup udang windu (Panaeus monodon). Skripsi. Institut Pertanian Bogor.
Salamah, Nur, B P U., Munti, Y., & Widanarni. (2015). Kinerja pertumbuhan ikan lele dumbo, Clarias gariepinus Burchel 1822, yang dikultur pada sistem berbasis bioflok dengan penambahan sel bakteri heterotrofik. Jurnal Ikhtiologi Indonesia. 15(2): 155-164. https://doi.org/10.32491/jii.v15i2.69
Simanjuntak, I. C.B .H. (2017). Perbedaan Konsentrasi Bakteri Penyususn Bioflok terhadap Efisiensi Pemanfaatan Pakan, Pertumbuhan dan Kelulushidupan Ikan Lele Dumbo (Clarias gariepinus). Jurnal Sains teknologi Akuakultur, 1(1): 47-56. https://jsta.aquasiana.org/index.php/jmai/article/view/7
Syam. A.T., Cut, Mulyani., & Teuku, M.F. (2019). Efektifitas Penggunaan Limbah Bioflok Budidaya Ikan Lele sebagai Inokulum untuk memulai Siklus Produksi Baru. Jurnal Ilmiah Samudra Akuatika, 3(2):7-13. https://ejurnalunsam.id/index.php/jisa/article/view/1991
Toi HT, Boeckx P, Sorgeloos P, Bossier P, & Stappen GV. (2013). Bacteria contribute to Artemia nutrition in algae-limited conditions: A laboratory study. Aquaculture, 388ââ¬â391: 1-7. https://doi.org/10.1016/j.aquaculture.2013.01.005
Widanarni, Yuhana M & Muhammad A. (2014). Bacillus NP5 Improves Growth Performance and Resistance against Infectious Myonecrosis Virus in White Shrimp (Litopenaeus vannamei). Ilmu Kelautan. 19(4):211-218. https://doi.org/10.14710/ik.ijms.19.4.211-218
License
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.