Mentawai Taro Corm Flour’s Benefits on Hyperglycemia and Pancreas Histopathology in Diabetic Mice
Authors
Wardatul Aini , Putra Santoso , Resti RahayuDOI:
10.29303/jbt.v24i4.7763Published:
2024-11-10Issue:
Vol. 24 No. 4 (2024): Oktober - DesemberKeywords:
Alloxan-induced, Colocasia esculenta var., fasting blood glucose, mentawai corm.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Diabetes mellitus (DM) is among the most severe health issues globally. This study aimed to determine the beneficial effects of Mentawai taro (Colocasia esculenta var. Mentawai) in managing hyperglycemia and attenuating inflammation in pancreatic ß-cells in alloxan-induced diabetic mice. Twenty-one adult male mice were divided into three groups: healthy (non-DM), alloxan-induced DM, and DM mice fed with a diet containing 25% Mentawai taro flour. The treatments were administered for four consecutive weeks. Various parameters, including blood glucose levels, glucose tolerance, and insulin tolerance, were assessed, alongside microscopic examination of pancreatic histology. The results demonstrated that supplementation with 25% Mentawai taro corm significantly lowered fasting blood glucose levels (**P<0.01) and improved glucose tolerance (*P<0.05) and insulin tolerance (*P<0.05) compared to untreated diabetic mice. Mentawai taro corm also ameliorated pancreatic degeneration, as indicated by a larger islet of Langerhans area, a higher total cell number per islet, and a significantly lower number of degenerated cells in pancreatic tissue (**P<0.01). In conclusion, supplementing Mentawai taro corm at 25% in the diet could effectively help manage diabetic issues, including hyperglycemia and pancreatic degeneration.
References
Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K. & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9): 430. https://doi.org/10.3390%2Fbiom9090430.
Alkhatib, A., Tsang, C., Tiss, A., Bahorun, T., Arefanian, H., Barake, R., Khadir, A. & Tuomilehto, J. (2017). Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients, 9(12). https://doi.org/10.3390/nu9121310.
Anaya-Isaza, A., & Zequera-Diaz, M. (2022). Detection of diabetes mellitus with deep learning and data augmentation techniques on foot thermography. IEEE Access, 10: 59564-59591. https://doi.org/10.1109/ACCESS.2022.3180036.
Bhattacharya, S., Maji, U., Khan, G. A., Das, R., Sinha, A. K., Ghosh, C. & Maiti, S. (2019). Antidiabetic role of a novel protein from garlic via NO in expression of glut-4/insulin in liver of alloxan induced diabetic mice. Biomed. Pharmacother, 111: 1302-1314. https://doi.org/10.1016/j.biopha.2019.01.036.
Bojarczuk, A., Skąpska, S., Khaneghah, A. M. & Marszałek, K. (2022). Health benefits of resistant starch: A review of the literature. J. Funct. Foods, 93. https://doi.org/10.1016/j.jff.2022.105094.
Chaudhury, A., Duvoor C, Dendi, V. S. R., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C. K., Lohani, G. P. & Mirza, W. (2017) Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol, 8. https://doi.org/10.3389/fendo.2017.00006.
Chen, C., Cohrs, C. M., Stertmann, J., Bozsak, R. & Speier, S. (2017). Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol. Metab, 6(9): 943-957. https://doi.org/10.1016/j.molmet.2017.06.019.
Diane, A., Al-Shukri, N. A., Bin-Abdul-Muumin, R. & Al-Siddiqi, H. H. (2022). β-cell mitochondria in diabetes mellitus: a missing puzzle piece in the generation of hPSC-derived pancreatic β-cells. J. Transl. Med, 20 (1). https://doi.org/10.1186/s12967-022-03327-5.
Dias-Soares, J. M., Pereira-Leal, A. E. B., Silva, J. C., Almeida, J. R. G. S. & De-Oliveira, H. P. (2017). Influence of flavonoids on mechanism of modulation of insulin secretion. Pharmacogn. Mag., 13(52): 639-646.https://doi.org/10.4103%2Fpm.pm_87_17.
Dimitriadis, G. D., Maratou, E., Kountouri, A., Board, M. & Lambadiari, V. (2021). Regulation of postabsorptive and postprandial glucose metabolism by insulin-dependent and insulin-independent mechanisms: An integrative approach. Nutrients. 13(1): 1-33. https://doi.org/10.3390/nu13010159.
Dludla, P. V., Mabhida, S. E, Ziqubu, K., Nkambule, B. B., Mazibuko-Mbeje, S. E., Hanser, S., Basson, A. K., Pheiffer, C. & Kengne, A. P. (2023). Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J. Diabetes, 14(3): 130-146. https://doi.org/10.4239%2Fwjd.v14.i3.130.
Haythorne, E., Rohm, M., Van-de-Bunt, M., Brereton, M. F., Tarasov, A. I., Blacker, T. S., Sachse, G., Silva-dos-Santos, M. Exposito, R. T., Davis, S., Baba, O. Fischer, R., Duchen, M. R., Rorsman, P., MacRae, J. I. & Ashcroft, F. M. (2019). Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nat. Commun, 10(1). https://doi.org/10.1038/s41467-019-10189-x.
Giuntini, E. B., Sardá, F. A. H. & De-Menezes, E. W. (2022). The effects of soluble dietary fibers on glycemic response: an overview and futures perspectives. Foods, 11(23). https://doi.org/10.3390/foods11233934.
Ikegami, H., Babaya, N. & Noso, S. (2021). ß-Cell failure in diabetes: Common susceptibility and mechanisms shared between type 1 and type 2 diabetes. J. Diabetes Investig, 12(9): 1526-1539. https://doi.org/10.1111%2Fjdi.13576.
Imtiaz, F., Islam, M., Saeed, H., Ahmed, A. & Rathore, H. A. (2023). Assessment of the antidiabetic potential of extract and novel phytoniosomes formulation of Tradescantia pallida leaves in the alloxan-induced diabetic mouse model. The FASEB Journal, 37: e22818. https://doi.org/10.1096/fj.202201395rr.
Kassab, M. M. S. (2023). Recombinant oral human insulin tablets preparation. Int. J. Health Sci, 1(1): 18-29. http://dx.doi.org/10.21608/ijhegy.2023.185967.1003.
Kumar, S., Singh, R.., Vasudeva, N. & Sharma, S. (2012). Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc. Diabetol, 11:9. https://doi.org/10.1186%2F1475-2840-11-9.
Kumar, K. N., Katkuri, S. & Ramyacharitha, R. (2018). A study to assess prevalence of diabetes mellitus and its associated risk factors among adult residents of rural khammmam. Int. J. Community Med. Public Health, 5(4): 1360-1365. https://doi.org/10.18203/2394-6040.ijcmph20180985.
Kumar, V., Singh, D., Singh, V., & Sharma, R. (2020). Antioxidant and hypoglycemic potential of Colocasia esculenta leaves: An in vitro and in vivo study. Journal of Food Biochemistry, 44(5), e13181. https://doi.org/10.1111/jfbc.13181
Kusuma, A. D., Saraswati, T. R. & Suprihatin, T. (2022). Effect of exogenous insulin injection on hematological status in rats (Rattus norvegicus L.). Nucl. Atmos. Aerosols, 391(1). https://ui.adsabs.harvard.edu/link_gateway/2022AIPC.2391c0001K/doi:10.1063/5.0073639.
Lenzen S. (2021). The pancreatic beta cell: an intricate relation between anatomical structure, the signalling mechanism of glucose induced insulin secretion, the low antioxidative defence, the high vulnerability and sensitivity to diabetic stress. ChemTexts. 7: 13. https://doi.org/10.1007/s40828-021-00140-3.
Li, X., Guo, Y., Wang, Z., & Zhang, X. (2021). Flavonoids from different Colocasia species and their potential anti-diabetic activities. Journal of Ethnopharmacology, 274, 114004. https://doi.org/10.1016/j.jep.2021.114004
Longkumer, S., Jamir, A., Kechu, M., Ezung, S. & Pankaj, P. P. (2021). Alloxan monohydrate induced diabetes: A comprehensive review. Int. J. of Innovative Life Sciences, 1(1). https://www.researchgate.net/publication/360438680.
Maideliza, T. Taufiq, A. & Amelia, A. Genetic diversity of cultivated taro by Mentawai’s indigenous community in Indonesia. (2018). ResearchGate. http://dx.doi.org/10.13140/RG.2.2.31197.67048.
Maejima, Y., Rita, R. S., Santoso, P., Aoyama, M., Hiraoka, Y., Nishimori, K., Gantulga, D., Shimomura, K. & Yada, T. (2015). Nasal oxytocin administration reduces food intake without affecting locomotor activity and glycemia with c-fos induction in limited brain areas. Neuroendocrinology, 101(1): 35-44. https://doi.org/10.1159/000371636.
Mujumdar, A. & Vaidehi, V. (2019). Diabetes prediction using machine learning algorithms. Procedia Comput Sci, 165: 292-299. https://doi.org/10.1016/j.procs.2020.01.047.
Pugh, J. E., Cai, M., Altieri, N. & Frost, G. (2023). A comparison of the effects of resistant starch types on glycemic response in individuals with type 2 diabetes or prediabetes: A systematic review and meta-analysis. Front. Nutr, 10: 1118229. https://doi.org/10.3389/fnut.2023.1118229.
Röder, P. V., Wu, B., Liu, Y. & Han, W. (2016). Pancreatic regulation of glucose homeostasis. Exp. Mol. Med, 48: 219. https://doi.org/10.1038/emm.2016.6.
Santoso, P. (2022). Ragam Khasiat Serat Pangan Tanaman Umbi dan Rimpang, KBM Indonesia: Indonesia. ISBN: 978-623-499-176-5, pp: 15-16.
Santoso, P., Maliza, R., Insani, S. J., Fadhila, Q. & Rahayu, R. (2021). Preventive effect of jicama (Pachyrhizus erosus) fiber against diabetes development in mice fed with high-fat diet. J. Appl. Pharm. Sci. 11(1):137-143. https://dx.doi.org/10.7324/JAPS.2021.110116.
Santoso, P., Simatupang, A. S., Fajria, A., Rahayu, R. & Jannatan, R. (2023). Andaliman (Zanthoxylum acanthopodium DC.) fruit ethanolic extract exerts attenuative effect on hyperglycemia, sensory and motoric function’s disorders in alloxan-induced diabetic mice. J. Adv. Vet. Anim. Res., 10(4): 608-619. https://doi.org/10.5455/javar.2023.j716.
Santoso, P., Maliza, R., Rahayu, R. & Manura, M. I. A. (2024). Fibers from tubers and rhizomes of local plant species in Indonesia as a potent dietary supplement to prevent diet-induced obesity. Rom. J. Diabetes Nutr. Metab. Dis., 31(1): 84-92. https://doi.org/10.46389/rjd-2024-1194.
Sha, W., Hu, F. & Bu, S. (2020). Mitochondrial dysfunction and pancreatic islet & beta; cell failure (Review). Exp. Ther. Med, 20(6): 1-1. https://doi.org/10.3892%2Fetm.2020.9396.
Solikhah, T. I., Wijaya, T. A., Salsabila, S., Pavita, D. A., Asdiyanta, A. N., Hamonangan, J. M. (2022). Histopathological pancreas analysis of hylocereus polyrhizus peel ethanolic extract on alloxan induced diabetic mice. J. Drug. Deliv. Ther, 12(5):149-152. http://dx.doi.org/10.22270/jddt.v12i5.5607.
Stoner, G. D. (2017). Hyperosmolar hyperglycemic state. Am. Fam. Physician, 96(11): 729-736. https://www.aafp.org/pubs/afp/issues/2017/1201/p729.pdf
Swisa, A., Glaser, B. & Dor, Y. (2017). Metabolic stress and compromised identity of pancreatic beta cells. Front Genet. 8: 21. https://doi.org/10.3389%2Ffgene.2017.00021.
Vinayagam, R. & Xu, B. (2015). Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr. Metab, 12(1). https://doi.org/10.1186%2Fs12986-015-0057-7.
Vinué, Á. and Navarro, H. G. (2015). Glucose and Insulin Tolerance Tests in the Mouse. Methods Mol Biol. 1339: 247-54. https://doi.org/10.1007/978-1-4939-2929-0_17
Woldekidan, S., Mulu, A., Ergetie, W., Teka, F., Meressa, A., Tadele, A., Abebe, A., Gemechu, W., Gemeda, N., Ashebir, R. Sileshi, M., Tolcha, Y. (2021). Evaluation of antihyperglycemic effect of extract of Moringa stenopetala (Baker f.) aqueous leaves on alloxan-induced diabetic rats. Diabetes Metab. Syndr. Obes., 14:185-192. https://doi.org/10.2147/DMSO.S266794.
Zhang, Y., Li, Q., Zheng, F., Liu, X., Wang, Z., & Zhao, X. (2022). Hypoglycemic effect of polysaccharides from Colocasia esculenta on streptozotocin-induced diabetic mice. International Journal of Biological Macromolecules, 205, 326-332. https://doi.org/10.1016/j.ijbiomac.2022.01.04
License
Copyright (c) 2024 Putra Santoso, Wardatul Aini, Resti Rahayu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.