Identification of Antibiotic-Resistant Gram Positive Bacteria from Broiler Caecum in The Slaughterhouse of Mataram City
Authors
Rifqi Rizqullah , Eustachius Hagni Wardoyo , Adelia Riezka Rahim , Rosyunita Rosyunita , Nurmi Hasbi , I Nyoman Yudayana IndratamaDOI:
10.29303/jbt.v25i1.8466Published:
2025-02-14Issue:
Vol. 25 No. 1 (2025): Januari - MaretKeywords:
AMR, chicken, caecum, resistance.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
The subtherapeutic use of antibiotics as Antimicrobial Growth Promoters (AGPs) in broilers has accelerated Antimicrobial Drug Resistance (AMR) in gut microbiota, posing a global threat. This study aimed to analyze the population, morphology, catalase test results, and antibiotic sensitivity of erythromycin and vancomycin to cefotaxime-resistant Gram-positive bacteria in the caecum of broilers from Mataram City slaughterhouses. Using exploratory descriptive method, five caecum samples were analyzed by Total Plate Count (TPC) on Man Rogosa Sharpe Agar (MRSA) media with and without cefotaxime, and incubated on Mannitol Salt Agar (MSA). Results revealed uniform bacterial morphology on MRSA (small, round, convex, entire edge, white, Gram-positive colonies) but varied morphologies on MSA. Catalase tests were negative on MRSA but mixed on MSA. Resistance to erythromycin and vancomycin was 80% on MRSA, while on MSA, erythromycin resistance reached 62.5% with variable vancomycin inhibition zones. The prevalence of cefotaxime-resistant bacteria was 5.24%. This study highlights diverse morphological, catalase, and antibiotic sensitivity profiles in cefotaxime-resistant bacteria, particularly on MSA. These findings underscore the need for stricter antibiotic use regulations and further research to mitigate AMR spread in poultry production.
References
Abdilah, F., & Kurniawan, K. (2022). Morphological Characteristics of Air Bacteria in Mannitol Salt Agar Medium. Borneo Journal of Medical Laboratory Technology, 5(1), 353–359. https://doi.org/10.33084/bjmlt.v5i1.4438
Abreu, R., Semedo-Lemsaddek, T., Cunha, E., Tavares, L., & Oliveira, M. (2023). Antimicrobial Drug Resistance in Poultry Production: Current Status and Innovative Strategies for Bacterial Control. Microorganisms, 11(4). https://doi.org/10.3390/microorganisms11040953
Adamski, P., Byczkowska-Rostkowska, Z., Gajewska, J., Zakrzewski, A. J., & Kłębukowska, L. (2023). Prevalence and Antibiotic Resistance of Bacillus sp. Isolated from Raw Milk. Microorganisms, 11(4). https://doi.org/10.3390/microorganisms11041065
Adimpong, D. B., Sørensen, K. I., Thorsen, L., Stuer-Lauridsen, B., Abdelgadir, W. S., Nielsen, D. S., Derkx, P. M. F., & Jespersen, L. (2012). Antimicrobial susceptibility of bacillus strains isolated from primary starters for african traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis. Applied and Environmental Microbiology, 78(22), 7903–7914. https://doi.org/10.1128/AEM.00730-12
Ali, M., Rosyidi, A., & Ichsan, M. (2018). Skrening Resistensi Antibiotik pada Bakteri Asam Laktat yang Diisolasi dari Usus Ayam Pedaging. Jurnal Ilmu Dan Teknologi Peternakan Indonesia, 4(1), 255–261. https://doi.org/10.29303/jitpi.v3i1.39
Anisimova, E. A., & Yarullina, D. R. (2019). Antibiotic Resistance of LACTOBACILLUS Strains. Current Microbiology, 76(12), 1407–1416. https://doi.org/10.1007/s00284-019-01769-7
Antarini, A. A. N., Agustini, N. P., Gumala, N. M. Y., & Mataram, I. K. A. (2022). Isolation, characterization and screening of functional properties probiotic candidates for lactic acid bacteria Bali traditional drink wong tea in vitro. International Journal of Health Sciences, 6(3), 1646–1658. https://doi.org/10.53730/ijhs.v6n3.13635
Ariyadi, R., Maulani, P. A., Ruhimat, U., & Hidana, R. (2023). Identification of Staphylococcus aureus Bacteria on the Palms of Visitors to Panumbangan Health Center. Mukhtabar : Journal of Medical Laboratory Technology, 1(2), 57–64. https://doi.org/10.52221/mjmlt.v1i2.376
Aroza, M., Erina, & Darniati. (2017). Isolasi dan Identifikasi Bakteri Gram Positif Kokus pada Kasus Ear Mites Kucing Domestik (Felis domesticus) di Kecamatan Syiah Kuala Kota Banda Aceh. Jimvet, 1(2), 117–124. https://doi.org/10.21157/jimvet.v1i2.2674
Backiam, A. D. S., Duraisamy, S., Karuppaiya, P., Balakrishnan, S., Chandrasekaran, B., Kumarasamy, A., & Raju, A. (2023). Antibiotic Susceptibility Patterns and Virulence-Associated Factors of Vancomycin-Resistant Enterococcal Isolates from Tertiary Care Hospitals. Antibiotics, 12(6). https://doi.org/10.3390/antibiotics12060981
BAPPEDA NTB. (2018). Strategi Penanggulangan Kemiskinan Daerah Nusa Tenggara Barat Tahun 2018-2023. https://data.ntbprov.go.id/sites/default/files/Dokumen SPKD NTB Th. 2018-2023 .pdf
Campedelli, I., Mathur, H., Salvetti, E., Rea, M. C., Torriani, S., Ross, R. P., & Hill, C. (2019). Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Applied and Enveronmental Microbiology, 85(1), 1–21. DOI: 10.1128/AEM.01738-18
CDC. (2024). Laboratory Testing for Vancomycin-resistant Staphylococcus aureus. https://www.cdc.gov/staphylococcus-aureus/php/laboratories/index.html
Cunha, B. A., Mickail, N., & Eisenstein, L. (2007). E. faecalis vancomycin-sensitive enterococcal bacteremia unresponsive to a vancomycin tolerant strain successfully treated with high-dose daptomycin. Heart and Lung: Journal of Acute and Critical Care, 36(6), 456–461. https://doi.org/10.1016/j.hrtlng.2007.02.012
Dewi, A. K. (2013). Isolasi, Identifikasi dan Uji Sensitivitas Staphylococcus aureus terhadap Amoxicillin dari Sampel Susu Kambing Peranakan Ettawa (PE) Penderita Mastitis Di Wilayah Girimulyo, Kulonprogo, Yogyakarta. JURNAL SAIN VETERINER, 31(2), 138–150. https://doi.org/10.22146/jsv.3780
Diskominfo Kota Mataram. (2021). Mataram Dalam Angka 2021. https://data.mataramkota.go.id/dataset/resource/e82e967c-093a-4900-a326-ad745902b819
Duche, R. T., Singh, A., Wandhare, A. G., Sangwan, V., Sihag, M. K., Nwagu, T. N. T., Panwar, H., & Ezeogu, L. I. (2023). Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. BMC Microbiology, 23(1). https://doi.org/10.1186/s12866-023-02883-0
Fiedler, G., Schneider, C., Igbinosa, E. O., Kabisch, J., Brinks, E., Becker, B., Stoll, D. A., Cho, G. S., Huch, M., & Franz, C. M. A. P. (2019). Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiology, 19(1), 1–13. https://doi.org/10.1186/s12866-019-1632-2
Frankenberg, L., Brugna, M., & Hederstedt, L. (2002). Enterococcus faecalis Heme-Dependent Catalase. JOURNAL OF BACTERIOLOGY, 184(22), 6351–6356. https://doi.org/10.1128/JB.184.22.6351
Gamal, F., Ahmed, A.-H., & Zeinab, S. (2014). Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. Brazilian Journal of Microbiology, 1(45), 25–33. doi: 10.1590/s1517-83822014000100005
Goldstein, E. J. C., Tyrrell, K. L., & Citron, D. M. (2015). Lactobacillus species: Taxonomic complexity and controversial susceptibilities. Clinical Infectious Diseases, 60(Suppl 2), S98–S107. https://doi.org/10.1093/cid/civ072
Guan, L., Beig, M., Wang, L., Navidifar, T., Moradi, S., Motallebi Tabaei, F., Teymouri, Z., Abedi Moghadam, M., & Sedighi, M. (2024). Global status of antimicrobial resistance in clinical Enterococcus faecalis isolates: systematic review and meta-analysis. Annals of Clinical Microbiology and Antimicrobials, 23(1). https://doi.org/10.1186/s12941-024-00728-w
Hayati, Z., Desfiana, U. H., & Suhartono, S. (2022). Distribution of multidrug-resistant Enterococcus faecalis and Enterococcus faecium isolated from clinical specimens in the Zainoel Abidin General Hospital, Banda Aceh, Indonesia. Biodiversitas, 23(10), 5043–5049. https://doi.org/10.13057/biodiv/d231010
Hellany, H., Assaf, J. C., Barada, S., el-Badan, D., Hajj, R. El, Abou Najem, S., Abou Fayad, A. G., & Khalil, M. I. (2024). Isolation and Characterization of Bacillus Subtilis BSP1 from Soil: Antimicrobial Activity and Optimization of Fermentation Conditions. Processes, 12(8), 1–16. https://doi.org/10.3390/pr12081621
Iman, E. R. ., Mahendra, I., & Utomo, R. . (2012). Uji Kepekaan Bacillus subtilis yang Diisolasi dari Sedimen Tambak Udang dan Tambak Ikan terhadap Bahan Antimikroba Antibacterial Susceptibility of Bacillus subtilis Isolated From Shrimp Pond and Fish Pond Sediment. Veterinaria, 5(3), 163–168.
Jarvis, B. (2016). Errors associated with colony count procedures. In Statistical Aspects of the Microbiological Examination of Foods: Third Edition (Third Edit, pp. 119–140). Elsevier B.V. https://doi.org/10.1016/B978-0-12-803973-1.00007-3
Jubeh, B., Breijyeh, Z., & Karaman, R. (2020). Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules, 25(12), 1–22. https://doi.org/10.3390/molecules25122888
Kementerian Pertanian. (2018). Berdampak Negatif Bagi Kesehatan, Pemerintah Larang Penggunakan Agp Pada Ternak. https://ditjenpkh.pertanian.go.id/berita/734-berdampak-negatif-bagi-kesehatan-pemerintah-larang-penggunakan-agp-pada-ternak
Khoerunnisa, S. F., Balia, R. L., & Pradini, G. W. (2022). Mekanisme Resistensi Antibiotik pada Lactobacillus dan Potensinya untuk Mengatasi Salmonellosis pada Ayam Broiler. Acta VETERINARIA Indonesiana, 10(2), 111–123. https://doi.org/10.29244/avi.10.2.111-123
Lau, C. H. F., Capitani, S., Tien, Y. C., Verellen, L. A., Kithama, M., Kang, H., Kiarie, E. G., Topp, E., Diarra, M. S., & Fruci, M. (2024). Dynamic effects of black soldier fly larvae meal on the cecal bacterial microbiota and prevalence of selected antimicrobial resistant determinants in broiler chickens. Animal Microbiome, 6(1). https://doi.org/10.1186/s42523-024-00293-9
Lewis, J. S. ., Weinstein, M. P. ., Bobenchik, A. M. ., Cameau, S., Cullen, S. K. ., Dingle, T., Galas, M. F. ., Humphries, R. M. ., Kirn, T. J. ., Limbago, B., Mathers, A. J. ., Pierce, V. M. ., Richter, S. S. ., Satlin, M., Schuetz, A. N. ., Sharp, S., & Simner, P. (2023). M100 : performance standards for antimicrobial susceptibility testing.
Mahfouz, A. A., Said, H. S., Elfeky, S. M., & Shaaban, M. I. (2023). Inhibition of Erythromycin and Erythromycin-Induced Resistance among Staphylococcus aureus Clinical Isolates. Antibiotics, 12(3). https://doi.org/10.3390/antibiotics12030503
Mak, P. H. W., Rehman, M. A., Kiarie, E. G., Topp, E., & Diarra, M. S. (2022). Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: a review. Journal of Animal Science and Biotechnology, 13(1), 1–20. https://doi.org/10.1186/s40104-022-00786-0
Mannan, S. J., Rezwan, R., Rahman, M. S., & Begum, K. (2017). Isolation and Biochemical Characterization of Lactobacillus species from Yogurt and Cheese samples in Dhaka Metropolitan Area. Bangladesh Pharmaceutical Journal, 20(1), 27–33. https://doi.org/10.3329/bpj.v20i1.32090
Mehdi, Y., Létourneau-Montminy, M. P., Gaucher, M. Lou, Chorfi, Y., Suresh, G., Rouissi, T., Brar, S. K., Côté, C., Ramirez, A. A., & Godbout, S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition, 4(2), 170–178. https://doi.org/10.1016/j.aninu.2018.03.002
Melgar-Lalanne, G., Rivera-Espinoza, Y., Farrera-Rebollo, R., & Hern´andez-S´anchez, H. (2014). SURVIVAL UNDER STRESS OF HALOTOLERANT LACTOBACILLI WITH PROBIOTIC PROPERTIES. Revista Mexicana de Ingeniería Química, 13(1), 323–335.
Mishra, A. K., & Ghosh, A. R. (2018). Characterization of Functional, Safety, and Probiotic Properties of Enterococcus faecalis AG5 Isolated From Wistar Rat, Demonstrating Adherence to HCT 116 Cells and Gastrointestinal Survivability. Probiotics and Antimicrobial Proteins, 10(3), 435–445. https://doi.org/10.1007/s12602-018-9387-x
Muigg, V., Cuénod, A., Purushothaman, S., Siegemund, M., Wittwer, M., Pflüger, V., Schmidt, K. M., Weisser, M., Ritz, N., Widmer, A., Goldenberger, D., Hinic, V., Roloff, T., Søgaard, K. K., Egli, A., & Seth-Smith, H. M. B. (2022). Diagnostic challenges within the Bacillus cereus-group: finding the beast without teeth. New Microbes and New Infections, 49–50. https://doi.org/10.1016/j.nmni.2022.101040
Nhung, N. T., Chansiripornchai, N., & Carrique-Mas, J. J. (2017). Antimicrobial resistance in bacterial poultry pathogens: A review. Frontiers in Veterinary Science, 4(AUG), 1–17. https://doi.org/10.3389/fvets.2017.00126
Pawar, R., Zambare, V., & Nabar, B. (2020). Comparative Assessment of Antibiotic Resistance in Lactic Acid Bacteria Isolated from Healthy Human Adult and Infant Feces. Nepal Journal of Biotechnology, 8(2), 69–75. https://doi.org/10.3126/njb.v8i2.31893
Quiloan, M. L. G., Vu, J., & Carvalho, J. (2012). Enterococcus faecalis can be distinguished from Enterococcus faecium via differential susceptibility to antibiotics and growth and fermentation characteristics on mannitol salt agar. Frontiers in Biology, 7(2), 167–177. https://doi.org/10.1007/s11515-012-1183-5
Retnowati, F. D., Purwestri, Y. A., & Sine, Y. (2024). Characterization of Lactic Acid Bacteria Isolated from Soymilk and Its Growth in Soymilk By-product Medium for the Application in Soymilk Fermentation. Journal of Tropical Biodiversity and Biotechnology, 09(04), 1–16. https://doi.org/10.22146/jtbb.89003
Rokon-Uz-Zaman, M., Bushra, A., Pospo, T. A., Runa, M. A., Tasnuva, S., Parvin, M. S., & Islam, M. T. (2023). Detection of antimicrobial resistance genes in Lactobacillus spp. from poultry probiotic products and their horizontal transfer among Escherichia coli. Veterinary and Animal Science, 20(March), 100292. https://doi.org/10.1016/j.vas.2023.100292
Satu Data NTB. (2023). Konsumsi Daging Hewan Ternak Berdasarkan Jenis Ternak Tahun 2022. https://data.ntbprov.go.id/dataset/konsumsi-daging-hewan-ternak/resource/8aa43b45-6bc5-4f15-9d2b-94a209fbfd46
Shah, S., Rampal, R., Thakkar, P., Poojary, S., & Ladi, S. (2022). The Prevalence and Antimicrobial Susceptibility Pattern of Gram-Positive Pathogens: Three-Year Study at a Tertiary Care Hospital in Mumbai, India. Journal of Laboratory Physicians, 14(02), 109–114. https://doi.org/10.1055/s-0041-1731136
Tahir, D., Dunggio, Y., & Paramita, D. A. (2024). DETECTION OF Staphylococcus aureus BACTERIA ON ESCALATOR HANDRAINS IN GORONTALO SHOPPING CENTER. Journal of Health, Technology and Science (JHTS), 5(2), 62–70. https://doi.org/10.47918/jhts.v5i2.1816
Tang, P., Low, D. E., Atkinson, S., Pike, K., Ashi-sulaiman, A., Simor, A., Richardson, S., & Willey, B. M. (2003). Investigation of Staphylococcus aureus Isolates Identified as Erythromycin Intermediate by the Vitek-1 System : Comparison with Results Obtained with the Vitek-2 and Phoenix Systems. 41(10), 4823–4825. https://doi.org/10.1128/JCM.41.10.4823
Tsonis, I., Karamani, L., Xaplanteri, P., Kolonitsiou, F., Zampakis, P., Gatzounis, G., Marangos, M., & Assimakopoulos, S. F. (2018). Spontaneous cerebral abscess due to Bacillus subtilis in an immunocompetent male patient: A case report and review of literature. World Journal of Clinical Cases, 6(16), 1169–1174. https://doi.org/10.12998/wjcc.v6.i16.1169
Waśko, A., Skrzypczak, K., Polak-Berecka, M., & Kuzdraliski, A. (2012). Genetic mechanisms of variation in erythromycin resistance in Lactobacillus rhamnosus strains. Journal of Antibiotics, 65(11), 583–586. https://doi.org/10.1038/ja.2012.73
WHO. (2024). WHO updates list of drug-resistant bacteria most threatening to human health. https://www.who.int/news/item/17-05-2024-who-updates-list-of-drug-resistant-bacteria-most-threatening-to-human-health
WHO. (2011). Tackling antibiotic resistance from a food safety perspective in Europe. In World Health Organization Regional Office for Europe. https://scholar.google.com/scholar_lookup?title=Tackling+Antibiotic+Resistance+from+a+Food+Safety+Perspective+in+Europe&author=World+Health+Organization&publication_year=2011
WHO. (2023). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Zhang, X., Tan, L., Ouyang, P., Ma, H., Peng, J., Shi, T., & Xie, L. (2023). Analysis of distribution and antibiotic resistance of Gram-positive bacteria isolated from a tertiary-care hospital in southern China: an 8-year retrospective study. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1220363
License
Copyright (c) 2025 Rifqi Rizqullah, Eustachius Hagni Wardoyo, Adelia Riezka Rahim, Rosyunita Rosyunita, Nurmi Hasbi, I Nyoman Yudayana Indratama

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.