Comparative Potential of Antibacterial Activity of Marine Plants for the Development of Natural Antimicrobial Agents: A Review

Authors

Nazila Nazwa Zikria , Nurhadis Nurhadis

DOI:

10.29303/jpm.v20i7.10264

Published:

2025-12-06

Issue:

Vol. 20 No. 7 (2025): in Progress

Keywords:

Antibiotic Resistance; Antibacterial; Marine Plants; Natural Agents; Secondary Metabolites

Articles

Downloads

How to Cite

Zikria, N. N., & Nurhadis, N. (2025). Comparative Potential of Antibacterial Activity of Marine Plants for the Development of Natural Antimicrobial Agents: A Review. Jurnal Pijar Mipa, 20(7), 1313–1320. https://doi.org/10.29303/jpm.v20i7.10264

Downloads

Download data is not yet available.

Abstract

Antibiotic resistance remains a major global health concern, driven by the misuse and overuse of antibiotics, which has resulted in multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli), leading to increased morbidity, mortality, prolonged hospital stays, and rising healthcare costs. To address this challenge, the search for alternative antibacterial agents that are natural, sustainable, and environmentally friendly has become urgent. Marine plants, including red macroalgae (Rhodophyta), brown algae (Phaeophyta), green algae (Chlorophyta), and seagrasses, produce secondary metabolites such as flavonoids, alkaloids, terpenoids, tannins, and sulfated polysaccharides with promising antibacterial properties. This systematic review analyzed 320 articles from PubMed, Google Scholar, and ScienceDirect, of which eight met the inclusion criteria, to compare the antibacterial potential of marine plant extracts against Gram-positive and Gram-negative pathogenic bacteria. The findings indicated that species such as Kappaphycus alvarezii, Corallina officinalis, Eucheuma spinosum, Sargassum polycystum, Caulerpa racemosa, and Padina australis exhibited antibacterial activity ranging from weak to very strong depending on species, extraction methods, solvents, concentrations, and environmental conditions, with K. alvarezii showing the highest inhibition zone of up to 26 mm against Bacillus subtilis and Vibrio species. The antibacterial mechanism is believed to involve membrane disruption, alteration of permeability, and inhibition of protein and DNA synthesis. In conclusion, marine plants demonstrate strong potential as sources of natural antibacterial agents that may reduce dependence on conventional antibiotics and mitigate the global antibiotic resistance crisis, though further research is required to standardize extraction methods, isolate active compounds, and validate efficacy and safety through MIC, MBC, and in vivo studies before clinical and industrial application.

References

G. Saragih, T. R. Hidayani, M. Mirnandaulia, C. N. Ginting, and E. Fachrial, Mikroba Endofit Dalam Dunia Kesehatan: Manfaat Dan Aplikasi, vol. 1, no. 1, pp. 1–83, 2023.

M. A. Salam et al., “Antimicrobial Resistance: A Growing Serious Threat for Global Public Health,” Healthcare, vol. 11, no. 13, p. 1946, 2023, doi: 10.3390/healthcare11131946.

A. Husna et al., “Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities,” Biomedicines, vol. 11, no. 11, p. 2937, 2023, doi: 10.3390/biomedicines11112937.

L. S. Juanda, E. Girsang, and S. L. R. Nasution, “Analisis faktor risiko pada infeksi Escherichia coli penghasil extended-spectrum beta-lactamases,” eJournal Kedokteran Indonesia, vol. 12, no. 3, pp. 264–270, 2024, doi: 10.23886/ejki.12.878.264.

M. A. Kurnianto and F. Syahbanu, “Resistensi antibiotik pada rantai pasok pangan: tren, mekanisme resistensi, dan langkah pencegahan,” Agrointek: Jurnal Teknologi Industri Pertanian, vol. 17, no. 3, pp. 608–621, 2023.

S. Amin and Y. Y. Nabila, “Pendekatan kimia medisinal dalam menanggulangi mekanisme resistensi antibiotik pada bakteri Gram-Positif dan Gram-Negatif,” World Health Digital Journal, vol. 1, no. 2, pp. 53–57, 2025.

D. Anggita, S. Nuraisyah, and E. P. Wiriansya, “Mekanisme kerja antibiotik,” UMI Medical Journal, vol. 7, no. 1, pp. 46–53, 2022.

V. P. Santos et al., “Seafood waste as attractive source of chitin and chitosan production and their applications,” International Journal of Molecular Sciences, vol. 21, no. 12, p. 4290, 2020, doi: 10.3390/ijms21124290.

D. M. Syafitri, “Analisis penggunaan antibiotik pada pasien rawat inap bedah di RSUD Raja Ahmad Tabib,” Jurnal Penelitian Farmasi Indonesia, vol. 13, no. 1, pp. 65–72, 2024.

I. Gajic et al., “A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges,” Antibiotics, vol. 14, no. 3, p. 221, 2025, doi: 10.3390/antibiotics14030221.

M. E. Elshobary et al., “Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review,” Pharmaceuticals, vol. 18, no. 3, p. 402, 2025, doi: 10.3390/ph18030402.

G. Muteeb, M. El Oirdi, R. N. A. Kazi, M. Farhan, and M. Aatif, “Antimicrobial resistance: Linking molecular mechanisms to public health impact,” SLAS Discovery, vol. 33, p. 100232, 2025, doi: 10.1016/j.slasd.2024.12.003.

K. S. Bonham, B. E. Wolfe, and R. J. Dutton, “Extensive horizontal gene transfer in cheese-associated bacteria,” eLife, vol. 6, p. e22144, 2017, doi: 10.7554/eLife.2214.

Y. P. A. Lee, O. T. Eldakar, J. P. Gogarten, and C. P. Andam, “Bacterial cooperation through horizontal gene transfer,” Trends in Ecology & Evolution, vol. 37, no. 3, pp. 223–232, 2022, doi: 10.1016/j.tree.2021.11.006.

A. Mann, K. Nehra, J. S. Rana, and T. Dahiya, “Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance,” Current Research in Microbial Sciences, vol. 2, p. 100030, 2021, doi: 10.1016/j.crmicr.2021.100030.

E. Cella et al., “Joining Forces against Antibiotic Resistance: The One Health Solution,” Pathogens, vol. 12, no. 9, p. 1074, 2023, doi: 10.3390/pathogens12091074.

C. D. Iwu, L. Korsten, and A. I. Okoh, “The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health,” MicrobiologyOpen, vol. 9, no. 9, p. e1035, 2020, doi: 10.1002/mbo3.1035.

A. N. A. Azzahra and G. Trimulyono, “Aktivitas antibakteri ekstrak rumput laut Gracilaria verrucosa terhadap bakteri Pseudomonas fluorescens patogen pada ikan,” LenteraBio: Berkala Ilmiah Biologi, vol. 13, no. 1, pp. 44–54, 2024.

R. K. Asharo et al., “Potensi Makroalga sebagai Zat Antifungi, Antibakteri, dan Antioksidan dalam Mendukung Pemanfaatan Sumber Daya Laut,” LenteraBio: Berkala Ilmiah Biologi, vol. 13, no. 2, pp. 270–278, 2024.

E. A. Sianipar, N. Satriawan, J. Sumartono, and P. F. A. Kambira, “Pengujian aktivitas antioksidan makro alga Sumbawa dalam hubungannya dengan kandungan senyawa bioaktif dan efek farmakologi,” Jurnal Riset Kesehatan Nasional, vol. 6, no. 2, pp. 151–157, 2022.

R. C. Kepel and D. M. H. Mantiri, “Biodiversitas makroalga di perairan pesisir Kora-Kora, Kecamatan Lembean Timur, Kabupaten Minahasa,” Jurnal Ilmiah Platax, vol. 7, no. 2, pp. 113–122, 2019.

I. Safitri et al., “Total phenolic content, antioxidant and antibacterial activities of Sargassum polycystum ethanol extract from waters of Kabung Island,” Berkala Sainstek, vol. 9, no. 3, pp. 139–145, 2021, doi: 10.19184/bst.v9i3.27199.

P. Mapelli-Brahm et al., “Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era,” Marine Drugs, vol. 21, no. 6, p. 340, 2023, doi: 10.3390/md21060340.

I. Idrus, F. Kurniawan, F. Mustapa, and D. Wibowo, “Concentration effect of leaf extract from Kekara Laut (Canavalia maritima Thou.) in inhibiting of Staphylococcus epidermidis bacteria with a statistical science approach,” Indonesian Journal of Chemical Research, vol. 8, no. 3, pp. 180–185, 2021.

N. Ahmed et al., “Comprehensive exploration of marine algae diversity, bioactive compounds, health benefits, regulatory issues, and food and drug applications,” Measurement: Food, vol. 14, p. 100163, 2024, doi: 10.1016/j.meafoo.2024.100163.

N. Cokrowati et al., “Exploring the Growth Dynamics, Carrageenan Yield, and Bioactive Properties of Eucheuma spinosum Cultivated with Different Methods,” Egyptian Journal of Aquatic Biology & Fisheries, vol. 29, no. 2, 2025.

D. S. Akbar, L. S. Anggit, and H. Muliasari, “Aktivitas antibakteri ekstrak dan fraksi Sargassum polycystum dari Pantai Batu Layar, Nusa Tenggara Barat,” Indonesia Natural Research Pharmaceutical Journal, vol. 7, no. 2, pp. 97–107, 2022.

M. V. Freitas et al., “Antioxidant and antimicrobial properties of selected red seaweeds from central Portugal,” Applied Sciences, vol. 13, no. 1, p. 157, 2022.

Z. F. Harhara, D. Suryani, and A. L. Sunarwidhi, “Uji aktivitas antibakteri ekstrak etanol rumput laut cokelat (Sargassum cristaefolium) terhadap Staphylococcus epidermidis,” Lumbung Farmasi: Jurnal Ilmu Kefarmasian, vol. 2, no. 2, pp. 138–145, 2021.

M. M. Ismail and M. S. Amer, “Characterization and biological properties of sulfated polysaccharides of Corallina officinalis and Pterocladia capillacea,” Acta Botanica Brasilica, vol. 34, no. 4, pp. 623–632, 2020.

M. F. Singkoh, D. Y. Katili, and M. J. Rumondor, “Phytochemical screening and antibacterial activity of brown algae (Padina australis) from Atep Oki Coast, East Lembean of Minahasa Regency,” Aquaculture, Aquarium, Conservation & Legislation, vol. 14, no. 1, pp. 455–461, 2021.

N. Yusvantika, R. Kusdarwati, L. Sulmartiwi, and R. Kusdarwati, “Uji aktivitas antibakteri ekstrak kasar alga merah Eucheuma spinosum terhadap pertumbuhan bakteri Staphylococcus epidermidis,” Journal of Marine and Coastal Science, vol. 11, no. 3, 2022.

M. M. Ismail and M. S. Amer, “Characterization and biological properties of sulfated polysaccharides of Corallina officinalis and Pterocladia capillacea,” Acta Botanica Brasilica, vol. 34, no. 4, pp. 623–632, 2020.

E. Marraskuranto, M. Nursid, S. Utami, I. Setyaningsih, and K. Tarman, “Kandungan fitokimia, potensi antibakteri dan antioksidan hasil ekstraksi Caulerpa racemosa dengan pelarut berbeda,” Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, vol. 16, no. 1, pp. 1–10, 2021.

K. More, S. Tayade, P. Gawande, S. Manik, and D. Shelke, “Antioxidant and antimicrobial potential of Canavalia gladiata leaves and seeds: GC-MS based metabolic profiling,” Indian Journal of Natural Products and Resources, vol. 13, no. 2, pp. 163–169, 2022.

G. M. Morsy, E. K. Bekhet, E. A. Mohamed, and R. A. Salah El Din, “Phytochemical screening for antibacterial compounds of some seaweed from coastal area of Abu-Qir, Alexandria, Egypt,” Egyptian Journal of Phycology, vol. 19, no. 1, pp. 47–57, 2018.

G. A. Nkwocha, K. U. Anukam, and O. C. Adumanya, “Evaluation of the nutritional potentials of three species of Canavalia for use in livestock diets,” Journal of Sustainable Technology, vol. 11, no. 2, pp. 86–92, 2021.

R. B. D. S. Putra, M. A. Gymnastyar, Y. Iswahfiudin, and A. M. S. Hertika, “Potensi daya hambat ekstrak Caulerpa lentillifera terhadap mikroba yang diisolasi dari penyakit luka dari lele,” Jurnal Perikanan Pantura (JPP), vol. 7, no. 1, pp. 497–503, 2024.

A. Safitri, A. Srihardyastutie, A. Roosdiana, and Sutrisno, “Antibacterial activity and phytochemical analysis of edible seaweed Eucheuma spinosum against Staphylococcus aureus,” Journal of Pure and Applied Chemistry Research, vol. 7, no. 3, pp. 308–315, 2018, doi: 10.21776/ub.jpacr.2018.007.03.389.

Y. Salosso, S. Aisiah, L. N. L. Toruan, and W. Pasaribu, “Nutrient content, active compound and antibacterial activity of Padina australis against Aeromonas hydrophila,” Active Compound, Antibacterial Activity, Padina Australis, Nutrient Content, vol. 12, no. 4, 2020.

N. I. Sari, I. Azisari, and A. Diharmi, “Identifikasi komponen bioaktif dan aktivitas antibakeri rumput laut cokelat (Sargassum plagyophyllum) terhadap bakteri Staphylococcus aureus dan Escherichia coli,” Agrointek: Jurnal Teknologi Industri Pertanian, vol. 18, no. 1, pp. 189–199, 2024.

N. I. Sari, A. Diharmi, S. W. Sidauruk, and F. M. Sinurat, “Identifikasi komponen bioaktif dan aktivitas ekstrak rumput laut merah (Eucheuma spinosum),” Jurnal Teknologi Dan Industri Pertanian Indonesia, vol. 14, no. 1, pp. 9–15, 2022.

M. Yunita, J. C. Warella, E. Astuty, M. Ohiwal, and S. Alimudi, “Antibacterial activity in vitro investigation of Eucheuma cottonii extract from Aru islands against pathogenic bacteria,” JPBIO (Jurnal Pendidikan Biologi), vol. 9, no. 1, pp. 66–73, 2024.

F. J. Umar, F. T. Idris, A. Usman, F. T. Balarabe, and A. Adamu, “Antibacterial activity of Polyalthia longifolia leaf extracts against Staphylococcus aureus and Escherichia coli,” UMYU Journal of Microbiology Research, vol. 9, no. 3, pp. 8–12, 2024.

S. Hainil et al., “Antifungal activity test of ethanol extracts and ethyl acetate and n-hexane fraction of sea grapes (Caulerpa racemosa) on the growth of the fungi Trichophyton mentagrophytes,” Open Access Macedonian Journal of Medical Sciences, vol. 11, no. A, pp. 76–82, 2023.

S. Sampulawa et al., “Efektivitas ekstrak alga coklat Padina australis dalam menghambat pertumbuhan Bacillus cereus dan Escherichia coli,” Bioscientist: Jurnal Ilmiah Biologi, vol. 12, no. 2, pp. 2773–2781, 2024.

H. A. Badr, A. E. Abo-Amer, M. A. Abu-Gharbia, and D. H. Ibrahim, “Antibacterial activity of Corallina officinalis seaweed extracts against some pathogenic bacteria,” Sohag Journal of Sciences, vol. 10, no. 2, pp. 173–180, 2025.

S. Seetharaman, V. Indra, B. Selva Muthu, A. Daisy, and S. Geetha, “Phytochemical profiling and antibacterial potential of Kappaphycus alvarezii methanol extract against clinical isolated bacteria,” World Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 86, pp. 1328–1337, 2016.

D. Das et al., “Phytochemical constituents, antimicrobial properties and bioactivity of marine red seaweed (Kappaphycus alvarezii) and seagrass (Cymodocea serrulata),” Foods, vol. 12, no. 14, p. 2811, 2023.

Author Biographies

Nazila Nazwa Zikria, Department of Pharmacy, Singaperbangsa University of Karawang

Nurhadis Nurhadis, Department of Pharmacy, Singaperbangsa University of Karawang

License

Copyright (c) 2025 Nazila Nazwa Zikria, Nurhadis Nurhadis

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).