Profile of student's algebraic thinking in solving mathematics problems reviewing from adversity quotient


Ratna Sukmaningrum , Ika Kurniasari






Vol. 17 No. 2 (2022): March 2022


Algebraic Thinking, Mathematics Problems, Adversity Quotient



How to Cite

Sukmaningrum, R., & Kurniasari, I. . (2022). Profile of student’s algebraic thinking in solving mathematics problems reviewing from adversity quotient. Jurnal Pijar Mipa, 17(2), 252–259.


Download data is not yet available.


Metrics Loading ...


One way to solve problems in mathematics is to think algebraically. Algebraic thinking is thinking using generalization abilities, transformational abilities, and global meta-level abilities to solve problems. A person's ability to overcome and solve problems is called Adversity Quotient (AQ). There are three categories in Adversity Quotient (AQ): climber, camper, and a quitter. This study aimed to describe the profile of students' algebraic thinking in solving mathematical problems in terms of Adversity Quotient. This research is qualitative research with the subjects of this research are three grade IX junior high school students with different AQ categories. The instruments in this study were Adversity Response Profile (ARP) questionnaires, Problem Solving Tests (TPM), and interview guidelines. The qualitative data analysis technique follows the Miles and Huberman concept, which consists of three stages: data reduction stage, data presentation, and conclusion drawing. This study indicates that climber students perform all stages in solving problems and fulfill all indicators of algebraic thinking. Camper students did not carry out the re-examination stage in solving problems and only carried out generalization activities in algebraic thinking. Quitter students do not perform the steps in solving problems and do not fulfill all the indicators of algebraic thinking.


Uno.HB (2007). Profesi Kependidikan. Bumi Aksara.

Yusrina, S. L. (2019). Profil Berpikir Aljabar Siswa SMP dalam Memecahkan Masalah Matematika Kontekstual Ditinjau dari Kemampuan Matematika. Jurnal Ilmiah Pendidikan Matematika Volume, 8(3).

Qur’ani, Z. M. W. (2015). Analisis Kemampuan Berpikir Aljabar Siswa Pada Materi Sistem Persamaan dan Pertidaksamaan Linier (Doctoral dissertation, UIN Sunan Ampel Surabaya).

Febriansyah, R., Yusmin, E., & Nursangaji, A. (2014). Analisis kesulitan siswa dalam memahami materi persamaan linear dua variabel di kelas x sma. Jurnal Pendidikan dan Pembelajaran Khatulistiwa, 3(2).

Sari, N. P. N., Fuad, Y., & Ekawati, R. (2020). Profil Berpikir Aljabar Siswa SMP Dalam Menyelesaikan Masalah Pola Bilangan. Kreano, Jurnal Matematika Kreatif-Inovatif, 11(1), 56-63.

Saputro, G. B., & Mampouw, H. L. (2018). Profil Kemampuan Berpikir Aljabar Siswa Smp Pada Materi Persamaan Linear Satu Variabel Ditinjau Dari Perbedaan Gender. Numeracy, 5(1), 77-90.

Sukmawati, A. (2015). Berpikir aljabar dalam menyelesaikan masalah matematika. Math Didactic: Jurnal Pendidikan Matematika, 1(2).

Kieran, C. (2004). Algebraic thinking in the early grades: What is it. The mathematics educator, 8(1), 139-151.

Purnomo, R. J., Widodo, S. A., & Setiana, D. S. (2020). Profil Berpikir Siswa dalam Memecahkan Masalah Matematis Berdasarkan Model Polya. RANGE: Jurnal Pendidikan Matematika, 1(2), 101-110.

Polya, G. (2014). How to solve it: A new aspect of mathematical method (No. 246). Princeton university press.

Masfingatin, T. (2013). Proses berpikir siswa sekolah menengah pertama dalam memecahkan masalah matematika ditinjau dari adversity quotient. JIPM (Jurnal Ilmiah Pendidikan Matematika), 2(1).

Suhandoyo, G. (2016). Profil Kemampuan Berpikir Kreatif Siswa dalam Menyelesaikan Soal Higherorder Thinking ditinjau dari Adversity Quotient (AQ). MATHEdunesa, 5(3).

Stoltz, PG (2000). Adversity Quotient: Mengubah Hambatan Menjadi Peluang. Gramedia Widiasarana Indonesia.

Nuraini, N., Nursangaji, A., & Hamdani, H. (2018). Proses berpikir siswa dalam pemecahan masalah matematika pada materi perbandingan ditinjau dari adversity quotient. Jurnal Pendidikan dan Pembelajaran Khatulistiwa, 7(3).

Fauziyah, I. N. L., Usodo, B., & Ekana Ch, H. (2013). Proses berpikir kreatif siswa kelas X dalam memecahkan masalah geometri berdasarkan tahapan wallas ditinjau dari adversity quotient (AQ) siswa. Jurnal Pendidikan Matematika SoLuSi (Tersohor Luas dan Berisi), 1(1).

Hidayah, S. R., Trapsilasiwi, D., & Setiawani, S. (2016). Proses berpikir kritis siswa kelas vii f mts. Al-qodiri 1 Jember dalam pemecahan masalah matematika pokok bahasan segitiga dan segi empat ditinjau dari adversity quotient. Jurnal Edukasi, 3(3), 21-26.

Komarudin, K., Monica, Y., Rinaldi, A., Rahmawati, N. D., & Mutia, M. (2021). Analisis Kemampuan Berpikir Kreatif Matematis: Dampak Model Open Ended dan Adversity Quotient (AQ). AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(2), 550-562.

Moleong, L. (2012). Metodologi Penelitian Kualitatif Edisi Revisi. PT.Remaja Rosdakarya.

Sudarman. (2011). Proses Berpikir Siswa SMP Berdasarkan Adversity Quotient (AQ) dalam Menyelesaikan Masalah Matematika.

Sugiyono. (2011). Metode Penelitian Pendidikan (Pendekatan Kuantitatif, Kualitatif, dan R & D). Alfabeta.

Irianti. (2017). Proses Pemecahan Masalah matematika Siswa berdasarkan Adversity Quontient. MATHEdunesa.

Author Biographies

Ratna Sukmaningrum, Mathematics Education Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya

Ika Kurniasari, Mathematics Education Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya


Copyright (c) 2022 Ratna Sukmaningrum

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).