Design of an optical rotation value measurement tool using an arduino device

Authors

Muhammad Muhammad , Beny Ragadita , Soni Prayogi , Saminan Saminan

DOI:

10.29303/jpm.v18i5.4811

Published:

2023-09-30

Issue:

Vol. 18 No. 5 (2023): September 2023

Keywords:

Malus' Law, Arduino, Polarizer, Physics Laboratory

Articles

Downloads

How to Cite

Muhammad, M., Ragadita, B. ., Prayogi, S., & Saminan, S. (2023). Design of an optical rotation value measurement tool using an arduino device. Jurnal Pijar Mipa, 18(5), 753–758. https://doi.org/10.29303/jpm.v18i5.4811

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Malus' law asserts that the square of the cosine of the angle formed between two polarizers is directly proportional to the light intensity after passing through them. In this study, we demonstrate this law using a straightforward configuration. Our method of measuring the polarizer's rotational angle while keeping the other polarizer stationary is innovative. It involves manually attaching a multi-turn potentiometer to one of the polarizers. The Arduino board is connected to the potentiometer and light sensor used to detect the intensity of transmitted light, allowing for the measurement of light intensity as a function of rotational angle. Additionally, we think that the configuration as it is now can be helpful in physics laboratory classes. It can also be demonstrated by using it during lectures.

References

Prior, K. A. (2005). SEMICONDUCTOR PHYSICS | Impurities and Defects. In R. D. Guenther (Ed.), Encyclopedia of Modern Optics (pp. 442–450).

Dutta Gupta, S., & Agarwal, A. (2017). Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture: Smart Lighting (pp. 1–25).

Sands, D. (2021). Physics Education Research and the Foundations of Physics: A Case Study from Thermodynamics and Statistical Mechanics. In B. G. Sidharth, J. C. Murillo, M. Michelini, & C. Perea (Eds.), Fundamental Physics and Physics Education Research (pp. 117–126).

Yang, B. (2005). 9—Dynamics of Particles and Rigid Bodies. In B. Yang (Ed.), Stress, Strain, and Structural Dynamics (pp. 279–350).

Whitaker, S. (1998). Coupled Transport in Multiphase Systems: A Theory of Drying. In J. P. Hartnett, T. F. Irvine, Y. I. Cho, & G. A. Greene (Eds.), Advances in Heat Transfer (Vol. 31, pp. 1–104).

Svelto, O., Longhi, S., Valle, G., Kück, S., Huber, G., Pollnau, M., Hillmer, H., Hansmann, S., Engelbrecht, R., Brand, H., Kaiser, J., Peterson, A., Malz, R., Steinberg, S., Marowsky, G., Brinkmann, U., Lo†, D., Borsutzky, A., Wächter, H., … Helmcke, J. (2007). Lasers and Coherent Light Sources. In F. Träger (Ed.), Springer Handbook of Lasers and Optics (pp. 583–936).

Waymouth, J. F. (2017). History of Light Sources. In R. Karlicek, C.-C. Sun, G. Zissis, & R. Ma (Eds.), Handbook of Advanced Lighting Technology (pp. 3–40).

Pan, A., & Zhu, X. (2015). 12—Optoelectronic properties of semiconductor nanowires. In J. Arbiol & Q. Xiong (Eds.), Semiconductor Nanowires (pp. 327–363).

Burgess, C. (2005). OPTICAL SPECTROSCOPY | Detection Devices*. In P. Worsfold, A. Townshend, & C. Poole (Eds.), Encyclopedia of Analytical Science (Second Edition) (pp. 438–443).

Prayogi, S. (2022). Studi Struktur Elektronik Sel Surya a-Si: H Lapisan Jamak Menggunakan Spektroskopi Elipsometri [Doctoral, Institut Teknologi Sepuluh Nopember].

Zhu, D., & Humphreys, C. J. (2016). Solid-State Lighting Based on Light Emitting Diode Technology. In M. D. Al-Amri, M. El-Gomati, & M. S. Zubairy (Eds.), Optics in Our Time (pp. 87–118).

Dowell, D. H., Bazarov, I., Dunham, B., Harkay, K., Hernandez-Garcia, C., Legg, R., Padmore, H., Rao, T., Smedley, J., & Wan, W. (2010). Cathode R&D for future light sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 622(3), 685–697.

Mateo, D., Luis Cerrillo, J., Durini, S., & Gascon, J. (2021). Fundamentals and applications of photo-thermal catalysis. Chemical Society Reviews, 50(3), 2173–2210.

Prayogi, S., Asih, R., Priyanto, B., Baqiya, M. A., Naradipa, M. A., Cahyono, Y., Darminto, & Rusydi, A. (2022). Observation of resonant exciton and correlated plasmon yielding correlated plexciton in amorphous silicon with various hydrogen content. Scientific Reports, 12(1).

Ghufron, S., & Prayogi, S. (2023). Cooling System in Machine Operation at Gas Engine Power Plant at PT Multidaya Prima Elektrindo. Journal of Artificial Intelligence and Digital Business (RIGGS), 1(2).

Phillips, L. (2019). 9—Solar energy. In T. M. Letcher (Ed.), Managing Global Warming (pp. 317–332).

Zainuddin, Z., Syukri, M., Prayogi, S., & Luthfia, S. (2022). Implementation of Engineering Everywhere in Physics LKPD Based on STEM Approach to Improve Science Process Skills. Jurnal Pendidikan Sains Indonesia (Indonesian Journal of Science Education), 10(2).

Hadjadj, A., Djellouli, G., & Jbara, O. (2010). In situ ellipsometry study of the kinetics of hydrogen plasma interaction with a-Si:H thin films: A particular temperature-dependence. Applied Physics Letters, 97(21), 211906.

Brongersma, M. L., Cui, Y., & Fan, S. (2014). Light management for photovoltaics using high-index nanostructures. Nature Materials, 13(5), 451–460.

Kasap, S., Koughia, C., Singh, J., Ruda, H., & OʼLeary, S. (2007). Optical Properties of Electronic Materials: Fundamentals and Characterization. In S. Kasap & P. Capper (Eds.), Springer Handbook of Electronic and Photonic Materials (pp. 47–77).

Prayogi, S., Cahyono, Y., Iqballudin, I., Stchakovsky, M., & Darminto, D. (2021). The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD. Journal of Materials Science: Materials in Electronics, 32(6), 7609–7618.

Febriani, F., Rahmah, A. N. A., Ashfiya, B. I. A. A., Astono, J., & Dwandaru, W. S. B. (2022). Simple Investigation on the Optical Properties of Carbon Nanodots Using Lasers and a Lux Meter. Jurnal Fisika Dan Aplikasinya, 18(1).

Putro, P. A., Yudasari, N., Irdawati, Y., Sulaeman, A. S., & Maddu, A. (2021). Reducing the Electrical Conductivity of ZnO/Ag Nanofiller for Solid Polymer Electrolytes Prepared by Laser Ablation in Polylactic Acid Solution. Jurnal Fisika Dan Aplikasinya, 17(2).

Bolton, W. (2009). Chapter 1—Programmable Logic Controllers. In W. Bolton (Ed.), Programmable Logic Controllers (Fifth Edition) (pp. 1–19).

Serhane, A., Raad, M., Raad, R., & Susilo, W. (2019). Programmable logic controllers-based systems (PLC-BS): Vulnerabilities and threats. SN Applied Sciences, 1(8), 924.

Silviana, F., & Prayogi, S. (2023). An Easy-to-Use Magnetic Dynamometer for Teaching Newton's Third Law. Jurnal Pendidikan Fisika Dan Teknologi, 9(1).

Hamzah, H., Sartika, D., & Agriawan, M. N. (2022). Development of Photoelectric Effect Learning Media based on Arduino Uno. Indonesian Review of Physics, 5(1).

Mulyanti, S., Sukmawati, W., & Tarkin, N. E. H. (2022). Development of items in Acid-Base Identification Experiments Using Natural Materials: Validity Test with Rasch Model Analysis. Phenomenon : Jurnal Pendidikan MIPA, 12(1).

Ramadhan, R. A., Kakke, G. R., Fajar, I. N., & Prayogi, S. (2023). Smart Trash Bin Berbasis Internet of Things Menggunakan Suplai dari Panel Surya. G-Tech: Jurnal Teknologi Terapan, 7(3), 1149–1158.

Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D. (2022). The influences of the front work function and intrinsic bilayer (i1, i2) on p-i-n based amorphous silicon solar cell's performances: A numerical study. Cogent Engineering, 9(1), 2110726.

Prayogi, S. (2023). Karakteristik Sel Surya Polikristal Pada Sistem Sun Simulator Menggunakan Lampu Halogen Bulm. G-Tech: Jurnal Teknologi Terapan, 7(1), 103–108.

Santoso, P. H., & Munawanto, N. (2020). Approaching electrical circuit understanding with circuit builder virtual laboratory. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 9(2).

Colinge, J. P., & Colinge, C. A. (Eds.). (2002a). Energy Band Theory. In Physics of Semiconductor Devices (pp. 1–49).

Prayogi, S., & Marzuki, M. I. (2022). The Effect of Addition of SnO2 Doping on The Electronic Structure of TiO2 Thin Film as Photo-Anode in DSSC Applications. Journal of Emerging Supply Chain, Clean Energy, and Process Engineering, 1(1).

Colinge, J. P., & Colinge, C. A. (Eds.). (2002b). Theory of Electrical Conduction. In Physics of Semiconductor Devices (pp. 51–72).

Ewert, U., Jaenisch, G.-R., Osterloh, K., Zscherpel, U., Bathias, C., Hentschel, M., Erhard, A., Goebbels, J., Hanselka, H., Nuffer, J., & Daum, W. (2006). Performance Control and Condition Monitoring. In H. Czichos, T. Saito, & L. Smith (Eds.), Springer Handbook of Materials Measurement Methods (pp. 831–912).

Author Biographies

Muhammad Muhammad, Laboratory of Measurement and Instrumentation, Faculty of Industrial Engineering, Pertamina University

Beny Ragadita, Laboratory Control and Computing, Faculty of Industrial Engineering, Pertamina University

Soni Prayogi, Universitas Pertamina

Saminan Saminan, Department of Physics Education, Faculty of Teacher Training and Education, Syiah University

License

Copyright (c) 2023 Muhammad Muhammad, Beny Ragadita, Soni Prayogi, Saminan Saminan

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).