Modeling the proportion of measles cases using sparse least trimmed squares
DOI:
10.29303/jpm.v18i5.5643Published:
2023-09-25Issue:
Vol. 18 No. 5 (2023): September 2023Keywords:
Measles, Outliers, LASSO, Robust Regression, Sparse RegressionArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Measles is a highly contagious disease and a health problem in several countries, including Indonesia. In 2022, Indonesia will experience an extraordinary situation (KLB) of measles cases, with the number of measles cases reaching 3,341 across 223 districts/cities. This data shows an increase of 32 times compared to 2021. North Sumatra is one of the provinces included in the list of regions and outbreak status, with 127 measles cases recorded in 2022. This study aims to find the factors that influence the number of measles cases in North Sumatra: one dependent variable, 34 independent variables, and 33 observations made up the study's variables. The data model chosen contains information on the percentage of measles cases linked to health, economic, human resource, and environmental variables. In addition, this study employs high-dimensional (data with many explanatory factors) data and includes outliers. Data with a large number of explanatory factors and outliers can be handled with LTS sparse analysis. The 34 independent variables were successfully chosen and reduced to 14 using the LTS sparse model. In addition, based on the and RMSE values for model evaluation, sparse LTS shows satisfactory results compared with classical LASSO, with and RMSE values for sparse LTS being 93.75% and 0.2933, respectively. Then, the and RMSE values for LASSO are -62.4% and 2.1734. The government can use these elements to guide lowering the number of measles cases in North Sumatra.
References
Alfons, A., Croux, C., & Gelper, S. (2013). Sparse least trimmed squares of analyzing high-dimensional large data sets. Ann. Appl. Stat, 7(1), 226-248.
Ardhiansyah, F., Rahardjani, K. B., Suwondo, A., Setiawati, M., & Apoina, K. (2019). Faktor Risiko Campak Anak Sekolah Dasar pada Kejadian Luar Biasa di Kabupaten Pesawaran Provinsi Lampung. JEKK: Jurnal Epidemiologi Kesehatan Komunitas, 4(2), 64-72.
Bottmer, L., Croux, C., & Ines, W. (2022). Sparse Regression for Large Data Sets With Outlier. ELSEVIER: European Journal of Operational Research, 297(2), 782-794.
BPS Provinsi Sumatera Utara. (2023). Provinsi Sumatera Utara Dalam Angka 2023. (M. J. Guning, & A. O. Sihombing, Penyunt.) Sumatera Utara: CV. E’Karya.
Hulu, V. T., Salman, Supinganto, A., Amalia, L., Sianturi, K. E., Nilasari, et al. (2020). Epidemiologi Penyakit Menular: Riwayat, Penularan dan Pencegahan. Medan: Yayasan Kita Menulis.
Kemenkes RI. (2021). Dalam Profil Kesehatan Indonesia Tahun 2021. Jakarta: Kementerian Kesehatan Republik Indonesia.
Kemenkes RI. (2022). Profil Kesehatan Indonesia Tahun 2021. Jakarta: Kementerian Kesehatan Republik Indonesia .
KPAI. (2023, Januari 31). Dipetik Febuari 9, 2023, dari Kasus Campak Tinggi: KPAI Dorong KEMENKES Segera Lakukan Upaya Percepatan Layanan Imunisasi: https://www.kpai.go.id/publikasi/kasus-campak-tinggi-kpai-dorong-kemenkes-segera-lakukan-upaya-percepatan-layanan-imunisasi
Monti, G. S., & Filzmoser, P. (2021). Sparse Least Trimmed Squares Regression With Compositional Covariates for High-Dimensional Data. Oxfod: Bioinformatics, 37(21), 3805-3814.
Rahayu, A., & Husein, I. (2023). Comparison Of Lasso And Adaptive Lasso. Sinkron, 1435-1445.
Randa, T. M., Tinungki, G. M., & Sunusi, N. (2022). Modeling the Proportion of Tuberculosis Cases in South Sulawesi using Sparse Least Trimmed Squares. ESAKTA: Journal of Sciences and Data Analysis, 3(2), 103-112.
Kemenkes RI. (2018, April 24). Situasi Campak dan Rubella di Indonesia. Dipetik Febuari 2023 9, dari https://www.kemkes.go.id/article/view/18110600003/situasi-campak-dan-rubella-di-indonesia.html
Sari, E. A., Rahma, H. I., Firdaus, M. R., Winarto, W., Indiyani, Y., & Nooraeni, R. (2020). Perbandingan Regresi OLS dan Robust MM- Estimation Dalam Kasus DBD di Indonesia 2018. Jurnal Education and Development: Institut Pendidikan Tapanuli Selatan, 8(2), 68-74.
Sartika, I., Debataraja, N. N., & Imro'ah, N. (2020). Analisis Regresi Dengan Metode Least Absolute Shrinkage and Selection Operator (LASSO) dalam Mengatasi Multikolinearitas. Bimaster: Buletin Ilmiah Mat. Stat. dan Terapannya, 9(1), 31-38.
Shodiqin, A., Aini, A. N., & Rubowo, M. R. (2018). Perbandingan Dua Metode Regresi Robust Yakni Metode Least Trimmed Squares (LTS) Dengan Metode Estimator-MM (Estimasi-MM) (Studi Kasus Data Ujian Tulis Masuk Terhadap Hasil IPK Mahasiswa UPGRIS),. Jurnal Ilmiah Teknosains, 4(1), 35-42.
Sugiyono. (2019). Metode Penelitian Kuantitatif Kualitatif dan R & D. Bandung: Alfabeta.
Suyono. (2018). Analisis Regresi untuk Penelitian . Yogyakarta: Deepublish.
Syah, M. F. (24, Januari 2019). Penyakit Campak Rubella (MR). Dipetik Febuari 9, 2023, dari https://dinkes.sarolangunkab.go.id/berita-penyakit-campak-rubella-mr.html
Yahmal, P. N. (2021). Faktor-faktoryang Berhubungan Dengan Kejadian Campak. JMH: Jurnal Medikal Hutama, 3(10), 1612-1615.
Author Biographies
Shelly Kilan Cahaya Pulungan, Department of Mathematics, Universitas Islam Negeri Sumatera Utara
Rina Filia Sari, Department of Mathematics, Universitas Islam Negeri Sumatera Utara
License
Copyright (c) 2023 Shelly Kilan Cahaya Pulungan, Rina Filia Sari
This work is licensed under a Creative Commons Attribution 4.0 International License.
The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.
2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).