The Physicochemical Characteristics of Crude Oil Extract Spirulina sp. by Osmotic-Shock Extraction Method

Authors

Heder Djamaludin , Anies Chamidah

DOI:

10.29303/jpm.v19i4.7042

Published:

2024-07-26

Issue:

Vol. 19 No. 4 (2024): July 2024

Keywords:

Docosahexaenoic Acid; Edible Oil; Eicosapentaenoic Acid; Green Extraction; Microalgae

Articles

Downloads

How to Cite

Djamaludin, H., & Chamidah, A. (2024). The Physicochemical Characteristics of Crude Oil Extract Spirulina sp. by Osmotic-Shock Extraction Method. Jurnal Pijar Mipa, 19(4), 668–672. https://doi.org/10.29303/jpm.v19i4.7042

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Spirulina sp. is a potential microalgae. One of the potentials that continue to be developed, such as edible oil. Various extraction methods can obtain Spirulina oil content, i.e., the osmotic shock method as a green extraction method. Each method used can affect the fatty acid components. Not many studies have reported the physicochemical characteristics of oil extract Spirulina using the osmotic-shock method. This study analyzes the physicochemical characteristics of crude oil extract Spirulina sp. extracted using the osmotic-shock method. The study used a simple, completely randomized design with treatment extraction times of 60, 90, and 120 minutes. The data were analyzed using analysis of variance and Duncan's test (α5%). The results showed that the treatment level of 60 minutes produced the lowest physicochemical characteristics and met the International Fish Oil Standards, where peroxide value 1.49±0.0089 mEq/Kg, iodine value 71.37±0.0035 g I2/g, saponification value 502.69±0.0069 mg KOH/g, acid value 0.049±0.0011 mg KOH/g, and Free Fatty Acid 0.0102±0.0003%. The total concentration of Saturated Fatty Acids is 36.18%, monounsaturated fatty Acids 7.72%, and polyunsaturated fatty Acids 49.41%. The fatty acid components are oleic acid/ω-9, linoleic acid/ω-6, linolenic acid/ω-3, eicosapentaenoic acid, and docosahexaenoic acid. The presence of EPA and DHA in the crude oil extract of Spirulina sp. showed potential for development as edible oil. The physical profile of Spirulina sp. oil extract obtained by the osmotic-shock method meets International Fish Oil Standards.

References

Saharan, V., & Jood, S. (2021). Nutritional composition of Spirulina platensis powder and its acceptability in food products. International Journal of Advanced Research, 5(6), 2295-3000.

Notonegoro, H., Djamaludin, H., Setyaningsih, I., & Tarman, K., (2022). Fraksinasi flavonoid Spirulina platensis dengan metode kromatografi lapis tipis dan aktivitas inhibisi enzim α-glukosidase. Jurnal Kelautan Tropis, 25(3), 299-308.

Bortolini, D. G., Maciel, G. M., Fernandes, I. A. A., Pedro, A. C., Rubio F. T. V., Branco, I. G., & Haminiuk, C. W. I. (2022). Functional characteristics of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chemistry: MOlecular Sciences, 5, 100134.

Tambun, R., Alexander, V., & Ginting, Y. (2021). Performance comparison of maceration method, soxhletation method, and microwave-assisted extraction in extracting active compounds from soursop leaves (Annona muricata): A review. IOP Conference Series: Materials Science and Engineering, 1122(012095), 1-7.

Nemer, G., Louka, N., Vorobiev, E., Salameh, D., Nicaud, J-M., Maroun, R. G., et al. (2021). Mechanical cell disruption technologies for the extraction of dyes and pigments from microorganisms: A review. Fermentation, 7(36), 1-1-7.

Sari, Y. W., Bruins, M. E., & Sanders, J. P. M. (2013). Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Industrial Crops and Products, 43, 78-83.

Shariati, M., & Hadi, M. R., (2011). Microalgal Biotechnology and Bioenergy in Dunaliella in A. Carpi (ed.), Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications. London: IntechOpen.

AOAC. (2006). Official Methods of Analysis. 18th Edition. Champaign, USA: Association of Official Analytical Chemists.

Djamaludin, H., & Chamidah, A. (2021a). Analisis komposisi asam lemak ekstrak minyak mikroalga Spirulina sp. dengan metode ekstraksi yang berbeda. Journal of Fisheries and Marine Research, 5(2) 254-61.

Djamaludin, H., & Chamidah, A. (2021b). Kualitas ekstrak minyak mikroalga Spirulina sp. dengan metode ekstraksi yang berbeda. Prosiding Simposium Nasional VIII Kelautan dan Perikanan, VIII, 215-24.

Wang, D., Li, Y., Hu, X., Su, W., & Zhong, M. (2015). Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans. International Journal of Molecular Sciences, 16(4), 7707-22.

Rachmaniah, O., & Riza, E. Y. (2010). Algae Spirulina sp. oil extraction method using the osmotic and percolation and the effect on extractable components. Jurnal Teknik Kimia, 4(2), 287-94.

Gujar, A., Cui, H., Ji, C., Kubar, S., & Li, R. (2019). Development, production, and market value of microalgae products. Applied Microbiology Open Access, 5(2), 162.

Laurens, L. M. L., Nagle, N., Davis, S., Sweeney, N., van Wychen, S., Lowell, A., et al. (2015). Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chemistry, 17(2), 1145-1158.

Medina, I., Undeland, I., Larsson, K., & Storrø, I. (2012). Activity of caffeic acid in different fish lipid matrices: A review. Food Chemistry, 131(3), 730-740.

Suprayitno, E., Sulistiyati, T. D., Panjaitan, M. A. P., Tambunan, J. E., Djamaludin, H., & Islamy, R. A. (2021). Biokimia Produk Perikanan. Malang: UB Press.

Suseno, S. H., Yang, T. A., Abdullah, W. N. W., & Saraswati. (2015). Physical characteristics and quality parameters of alkali-refined lemuru oil from Banyuwangi, Indonesia. Pakistan Journal of Nutrition, 14(2), 107-11.

Chimsook, T., & Wannalangka, W. (2015). Effect of microwave pretreatment on extraction yield and quality of catfish oil in Northern Thailand. EDP Sciences, 35, 1-5.

Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science and Technology, 49, 96-109.

Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560.

Selvi, M. K., Nagalapur, A. N., Vijayaraj, P. (2023). Comparative assessment of edible oil oxidative stability through accelerated stability study. Biomedicine, 43(6), 1662-1666.

Vidal, N. P., Adigun, O, A., Pham, T. H., Mumtaz, A., Manful, C., Callahan, G., Stewart, P., Keough, D., & Thomas, R. H. (2018). The Effects of Cold Saponification on the Unsaponified Fatty Acid Composition and Sensory Perception of Commercial Natural Herbal Soaps. Molecules, 23(9), 2356.

Maulana, I. T., Sukraso, & Damayanti, S. (2014). Kandungan asam lemak dalam minyak ikan Indonesia. Jurnal Ilmu dan Teknologi Kelautan Tropis, 6(1), 121-30.

Djamaludin, H., Sulistiyati, T. D., Chamidah, A., Nurashikin, P., Roifah, M., Notonegoro, H., & Ferdian, P. R. (2023). Quality and fatty acid profiles of fish oil from tuna by-products extracted using a dry-rendering method. Biodiversitas, 24(11), 6100-6106.

Gorjzdadeh, H., Sakhaei, N., Doustshenas, B., Ghanemi, K., & Archangi, B. (2016). Fatty acid composition of Spirulina sp., Chlorella sp. and Chaetoceros sp. microalgae and introduction as potential new sources to extinct omega 3 and omega 6, Iranian South Medical Journal, 19(2), 212-224.

Widianingsih, Hartati, R., Endrawati, H., & Mamuaj, J. (2013). Fatty acid composition of marine microalgae in Indonesia. Journal of Tropical Biology and Conservation, 10, 75-82.

Raya, I., Anshar, A. M., Mayasari, E., Dwiyana, Z., & Asdar, M. (2016). Chorella vulgaris and Spirulina platensis: Concentration of protein, Docosahexaenoic Acid Chorella (DHA), Eicosapentaenoic Acid (EPA) and variation concentration of maltodextrin via microencapsulation method. International Journal of Applied Chemistry, 12(4), 539-548..

So, J., Wu, D., Lichtenstein, A. H., Tai, A. K., Matthan, N. R., Maddipati, K. R., Lamon-Fava, S. (2021). EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study. Atherosclerosis, 316, 90-98.

Bland, J. S. (2022). Therapeutic Use of Omega-3 Fatty Acids for Immune Disorders In Search of the Ideal Omega-3 Supplement. Integr Med (Encinitas), 21(5), 14-18.

Kousparou, C., Fyrilla, M., Stephanou, A., & Patrikios, I. (2023). DHA/EPA (Omega-3) and LA/GLA (Omega-6) as Bioactive Molecules in Neurodegenerative Diseases. International Journal of Molecular Sciences, 24(13), 10717.

Author Biographies

Heder Djamaludin, Departement of Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University

Anies Chamidah, Departement of Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University

License

Copyright (c) 2024 Heder Djamaludin, Anies Chamidah

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.

2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).